
The Simple Times
TM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTS
SM

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times is an openly-available publica-
tion devoted to the promotion of the Simple Network

Management Protocol. In each issue, The Simple

Times presents technical articles and featured columns,

along with a standards summary and a list of Internet

resources. In addition, some issues contain summaries

of recent publications and upcoming events.

In this Issue:

Emerging Management Technologies

Towards Useful Management : : : : : : : : : : : 1

Some Experiences with Emerging Management

Technologies : 6
Overview of a Web-based Agent : : : : : : : : : : 8

The CyberAgent Framework : : : : : : : : : : : : 12

Featured Columns

The SNMP Framework : : : : : : : : : : : : : : : 15

Frequently Asked Questions : : : : : : : : : : : : 16

Industry Comment : : : : : : : : : : : : : : : : : 17

Miscellany

Standards Summary : : : : : : : : : : : : : : : : 19

Internet Resources : : : : : : : : : : : : : : : : : 23

Publications : 24

Publication Information 24

The Simple Times is openly-available. You are free

to copy, distribute, or cite its contents; however, any

use must credit both the contributor and The Simple

Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this

publication is distributed on an “as is” basis, without

warranty. Neither the publisher nor any contributor

shall have any liability to any person or entity with

respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information

contained in The Simple Times.

The Simple Times is available via both electronic

mail and hard copy. For information on subscriptions,

see page 24.

Towards Useful Management
Chris Wellens, Interworking Labs

Karl Auerbach, Precept Software

SNMP’s greatest success is in providing the framework
to deliver management capabilities for highly focused,

device specific applications. The industry needs to move

beyond this accomplishment.

The purpose of this article is to consider new concepts

and capabilities in network management. These range
from incremental enhancements of the current state of

affairs to wild-eyed dreaming.

The approaches are these, in order of increasing

departure from current practices:

� enhanced MIB definitions with greatly increased

MIB semantics, in particular, the creation of “meta

variables”;

� embedding of management applications into devices,

with control interfaces exported to humans via

HTTP/HTML based web pages;

� replacement of the SNMP access method with one

based on HTTP;

� replacement of the SNMP access method with one

based on long term “associations”;

� simple management by delegation through the use
of script MIBs;

� semi-autonomous area managers; and,

� network management “worms”.

These approaches are not mutually exclusive.

MIBs Are Precious

During the SNMP years, we’ve come up with reams and
reams of MIB definitions. These MIBs comprise the

collected thoughts by experts of what exactly constitutes

the valuable data points needed to monitor and control

a device. These MIBs are the most valuable legacy of

SNMP.
Along with the MIBs themselves, we have learned

the value of concise, machine-parseable MIB definitions.

The Simple Times 2

These form the fundamental vehicle by which a general

purpose management station can learn the about the

devices under its control.

Myths

Network management in the Internet has been the

product of many myths. At least two of these have been
shown to be mere vapors:

The Myth of The Collapsing Network:

Connectionless transports, such as UDP, have been

advanced as necessary for network management because

of their ability to work when the network is failing. To

put the myth contrariwise, management using TCP is

deemed impossible because the myth asserts that TCP
streams will break but that trusty UDP will get through

to save the day.

We must first recognize that there is a distinction

between the “network management” of monitoring and

capacity planning from the “network management” of
troubleshooting. For convenience, we’ll refer to the

former simply as “network management” and the latter

as “troubleshooting”.

Nearly 100% of network management occurs when

networks are not failing.

When today’s networks break, it is usually due to

either a hard connectivity failure or a routing failure.
In either case, neither TCP nor UDP get through.

Error bursts and congestion failures do occur, but these

tend to be transient, and whether performed by the TCP

engine or in a network management station’s SNMP

retry logic, the packets do tend to get through eventually.

It is interesting that with TCP’s congestion avoidance
algorithms, TCP based streams behave in a way more

likely to alleviate the congestion than unregulated UDP

streams.

Quality of service controls (such as RSVP) are coming

to the Internet. We expect management traffic will get

the ability to request priority. This will help ensure that
as long as a pathway exists, there will always be a way

to monitor and control the net no matter how congested

it gets.

Troubleshooting is a distinct branch of network man-

agement and requires tools and techniques quite dif-
ferent from those used for continuous monitoring and

control. In troubleshooting, SNMP is, at best, a

tertiary level tool with value rather below that of “ping”,

“traceroute”, “nslookup”, and “mtrace”.

The Myth of the Dumb Agent:

How often have we been told that agents are simple-

minded devices that can’t support anything other than a
simple SNMP agent? Even if that were true nine years

ago, an assertion to which our experience speaks to the

contrary, it is completely untrue today.

Today’s network devices often contain processors and

memory exceeding that of our management platforms

of a few years ago. Already these devices perform
numerous autonomous operations and have considerable

protocol stacks already in place.

Today’s network devices are capable of managing

themselves, if given the opportunity. (We must admit,

however and unhappily, that there are is a very large

class of price sensitive devices in which every corner
that could be cut was cut, including the time to read the

relevant specifications or perform any interoperability

testing.)

Next Stop Where?

So where should we take network management? The
next sections discuss a few ideas, ranging from the

incremental to the radical.

Meta Variables

The “Meta-Variable” concept has been around for at least

the last six years. It is simple to do and requires no

changes to existing protocols or agent implementations.
A meta-variable is simply a MIB variable which

exists only in the MIB definition document. Each

meta-variable is defined as a function of real MIB

variables.

Meta-variables would be used by MIB designers to
express useful derivations that can be made from the raw

data. This could capture a significant body of empirical

knowledge which today is rarely, if ever, recorded.

The function may be simple, such as the dividend

produced when an error counting Gauge variable is

divided by sysUpTime. In this case, the result would
be an average error rate.

Or the function may be more complex, like something

that takes the second derivative with respect to time

of that error counting Gauge. This function would

highlight significant changes in the error rates on an
interface, which is a far more useful indicator of trouble

than an average error rate.

To reify these meta-variables, a management station

would have to perform the function. This implies that

the function must be expressed by some procedural

statement that can be mapped down to basic SNMP get
and set primitives and polling. One might say that the

functions would be best expressed as simple scripts.

The definition of these meta-variables and the func-

tions used to generate them would be expressed in

standard MIB definition documents with appropriate
formalities so that they could be machine parsed and

utilized by a management station.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 3

An extension of the meta-variable concept is to place

intermediary devices in the network whose role is to

compute these meta-variables and export them as real

SNMP variables in a MIB specific to those intermediary
devices. Another extension is for the SNMP agents

themselves to compute the meta-variables, in which case

they become real-variables.

Embedded Management Applications

The World-wide Web is everywhere. Everybody has a

browser. These browsers are a standard user interface
available to any application which chooses to communi-

cate using the Web’s native protocol, HTTP, as specified

in RFC 1945.

Although SNMP itself is relatively “simple”, it takes
some work to build the MIB support in an agent,

and considerably more work to build the management

support to utilize the MIB data, and a great deal of

work to deploy the manager onto the various network

management “platforms”.

An HTTP/HTML management server embedded in a

managed device, with underlying TCP is not significantly

more complex or memory intensive than an SNMP agent

with mechanisms supporting generalized lexi-ordering
and arbitrary collections of objects in a set. (It is easy

to vastly underestimate the amount of work required for

an agent to handle an arbitrary collection of proposed

values which may arrive in an set request.)

If one looks at many of today’s workstation-based man-

agement platforms, one quickly realizes that they are

really not much more than a collection of device-specific

add-ons.

Those add-ons could be just as easily created by having

a device export highly device specific web pages with

controls and user interface paradigms. For example,

management platforms take pride in the fact that they

can project a rendering of a managed device, so that the
operator can point at a port to invoke a control panel for

that specific port. This is pretty routine stuff for a typical

web server.

The device vendor ships one, self contained product.
That product includes its own management functions

and does not depend on anything except that WWW

browsers are reasonably uniform and ubiquitous. With

respect to its management functions, the vendor controls

the horizontal and it controls the vertical; the vendor
controls everything about the device and its manage-

ment, from operation to GUI. It’s an extremely attractive

proposition.

The great drawback of this approach is that it requires
human intelligence to comprehend the WWW forms

presented by a device. If one accepts the proposition,

as we do, that in the long-term, networks should

perform significant self-management, then this approach

represents a substantial danger that we will end up

further from our goal rather than closer.

Using HTTP as an Access Method

SNMP should not be confused as being network manage-

ment. Rather SNMP is merely an access method used
by a management station to read and write items in an

agent’s MIB.

The myths of “The Collapsing Network” and “The
Dumb Agent” have forestalled many efforts to consider a

connection-oriented alternative to SNMP.

Today’s Internet is successfully carrying an enormous

transaction load using the World-wide Web’s HTTP,
which is a TCP-based protocol. HTTP transactions follow

a very simple life-cycle:

1. Client creates a TCP connection to the server.

2. Client transmits an HTTP operation, usually a GET

or a POST, to the server. Although both can be used

to carry additional information from the client to
the server, POST has no restrictions on the size or

structure of that information.

3. The server responds with an HTTP header followed

by a MIME-typed chunk of binary data of arbitrary
size. This data may be literally anything that can

be reduced to binary. It may be the familiar HTML

of WEB pages, a JPEG image, or instructions to the

browser how to launch an MBONE viewer.

4. The connection is closed.

HTTP’s major shortcoming is that it doesn’t do enough
work per TCP connection. Efforts are underway to

reduce this weakness.

One could readily conceive of a number of ways to
encode MIB information in that chunk of binary data.

It could be truly binary, with its own MIME type. Or

it could be embedded in HTML as readily identifiable,

machine parseable, structured comments.

One might think that the real issue with this approach

is how to map get, get-next, get-bulk, and set onto

this scheme.

However, the real issue is whether we really need the
get* trinity at all. The get operation is the only silver-

bullet of the three SNMP retrieval operations; the latter

two are merely means to get past SNMP’s limited data

unit imposed by the myth of “The Collapsing Network”.

As such, all three retrieval operations could be collapsed
into a single get-subtree operator that takes a single

parameter, an object identifier, and returns all objects

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 4

which are prefixed by that OID. For convenience, we

ought to define the subtree traversal to return the objects

in lexicographic order; and, for efficiency, we should allow

a list of prefixes and allow the return of multiple sub-
trees.

So, how would this actually be mechanized over HTTP?

Consider SNMP queries as the equivalent of a WWW

form in which the user or management station simply
lists the MIB objects it wants to obtain or set values into.

The SNMP response would be the web page returned as

a result of processing the input form.

For processing efficiency, this result need not be

encoded in a way that could be directly presented to

a human user. The data could be handled either

by a special application which speaks HTTP or by a
management plug-in to a WWW browser.

One very attractive feature about this approach is that
it may be able to piggyback on those WWW security

features which are falling into place.

The main drawback of this scheme is that it can be

highly intensive in its use of TCP connections, but as

has been mentioned, the WWW community is already

facing and, hopefully, resolving this problem.

It has been argued by some that this approach would

degenerate into a prodigious number of short TCP

connections, each retrieving only a small number of MIB

variables. This is a valid concern. It has also been
argued that the gain offered by TCP is not so great when

comparing with the get-bulk operator. This is true,

however, get-bulk is not widely deployed (yet). And

it merely changes the point at which the curve of TCP

efficiency crosses that of SNMP efficiency; it does not
change the fact that, as MIB retrieval size increases,

TCP becomes more efficient than UDP-based SNMP.

Using long-lived SNMP Associations

Consider the proposition that there exists a long-term re-

lationship between a management station and managed

devices on the network.

In SNMP, this relationship is somewhat vague and

tends to be indirectly visible as polling by managers

(to determine ongoing device status), trap destination

configuration in agents, and table management in
RMON devices. In the various SNMPv2 proposals, this

relationship was made manifest through the various

administrative frameworks.

Why not go the next step to acknowledging the

relationship and creating an explicit manager-agent

“association”? This association would be composed of

security and other state information and there would
exist, whenever possible, an open transport connection

between the manager and agent. (When that underlying

transport connection fails, the two ends would attempt to

reconstruct it and re-synchronize their association state.)

This approach vastly simplifies the issues of securi-

ty-̃-ãuthentication and privacy exchanges would occur

at association startup and would be cross-checked at
important points in the association (typically in the form

of a handshake when re-building transport connections

and as cryptographic-checksums embedded as integrity

checks in the various transactions crossing the associa-

tion.)

This approach also obtains a significant performance

improvement over today’s SNMP when moving any
significant amount of data. (With today’s TCP protocol

engines for small queries, however, there may be three

or four packets crossing the net rather than the two for

UDP based SNMP, although the comparative analysis

can be rather complex and highly subject to packet loss
rates and the TCP windowing and ACK behavior of a

given TCP implementation.)

Scripting MIBs

Through the use of a MIB one can insert a script into a

device, start its execution, poll for completion (or await

a trap), and fetch the results.

One can imagine, for example, a script that monitors
the variables in a device watching for tell-tale signs,

such as a rapid increase in an error rate. The script

could then either report the problem, trigger additional

diagnostic tests, or take corrective action. (The latter two

would require sophisticated scripts.) Scripts are ideal
mechanisms to evaluate and act upon meta-variables, as

described earlier.

Scripts are often expressed in a simple interpretive

language. Each line of the script is simply a row in a

table of octet string variables.

This is not a new idea: some years ago David Levy

of SNMP Research published a “Script MIB” and the

University of Delft allows a management station to inject
Scheme language programs as RMON filters.

The real difficulties of all script approaches are not

the scripts themselves or the language used (although,

as one can expect, there are there are competing camps

advocating TCL, Scheme, Java, Python, APL, RPG,

Cobol, or French.)

The difficulties are these:

� script security: Can the script be kept within

bounds? This is a difficult issue because, almost

by definition, network management implies the

exercise of discretionary control. If network man-

agement is to have the ability to make beneficial
changes, it almost necessarily has the power to cause

damage if misused.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 5

� script integrity: One wants to be sure that the script

being executed is actually the one intended. In Java,

there are already authorities who will place their

imprimatur on a script with the guarantee that “this
script is safe” according to some criteria.

� resource control: Scripts are programs and as such

they can consume memory and computing cycles and

potentially other resources. How does one put a

quota on a script?

� script control: A management station needs to be

able to take control of an executing (or run-away)

script. There needs to be a way to halt scripts.

� script recovery: A script can have a lifetime longer

than the memory of the management station which
started it. It is important that a management

station can learn of the existence of scripts it created.

� expressive power: There is a great deal of room for

differences of opinion regarding the fundamental ac-

tions which a script can invoke. Our own experience
is that the primitives should be reasonably high level

and should include the following:

– ICMP ping (with control over packet size,

packet contents, IP options, and retry inter-

vals). This ping should capture round trip
times, loss rates, data inconsistencies between

what is sent and what is returned, and any

ICMP unreachable messages. On multi-homed

machines, the script should have control over

which interface is used to send the packet.

– Traceroute (with control over source routing,

packet sizes, retry intervals, and maximum and

minimum TTL).

– Path MTU discovery.

– DNS lookup tools.

– SNMP operations.

� script migration: With a script MIB, the migration of

scripts from one machine to another is not an issue,

since the management station creating the script

controls the migration.

� Script debugging: Scripts are programs and pro-

grams have bugs. Initially we can expect scripts to

be fairly simple and amenable to simple debugging

techniques. However, as scripts grow in complexity,

we will need means to trace their execution, trap
exceptional conditions, set breakpoints, and inspect

script variables.

Initially we can expect scripts to be fairly simple: a

good first step might simply be to watch what human

managers do and use the scripts as simply macros for

commonly executed sequences. Over time, as experience
grows, scripts should grow in sophistication and, as we

learn to trust them, given more power to take limited

actions without asking for human permission first. This

leads us to the next step:

Semi-Autonomous Area Managers

The notion of scripts opens up the possibility that one can

design a system to delegate the monitoring and control

tasks from a high level manager to subordinate “area

managers” in close proximity to those devices that they
are managing.

This is not a new idea. Professor Yechiam Yemini of

SMARTS has been building tools using these techniques

for many years. Java’s popularity is extending this idea

to areas other than network management.
The basic idea is “management by delegation”, the

superior level manager creates a script which it down-

loads into the area manager for execution. The area

manager is, of course, a multi-threaded device and can

execute many scripts simultaneously, perhaps on behalf
of multiple superior managers.

An area manager would usually be given authority

over devices with which it has inexpensive, low latency

communications. One might conceive of an area manag-

er’s span of control as a single LAN or a group of LANs

connected with a single high performance router.
The area manager might interact with the end devices

using scripts, but it is far more likely that it would be

done using traditional SNMP. One of the benefits of the

proximity of the area manager and the ultimate devices

is that the high bandwidth and presumably low packet
loss rate would allow SNMP exchanges to be done rapidly

and with minimal data distortion due to non-atomic

snapshots of device tables.

An interesting possibility of area managers is that

if they are equipped with out-of-band communications
paths they can play a very useful role in network trou-

bleshooting. Anyone who has ever repaired networks

knows that you always need to be in at least two places

at once. An area manager running a pre-loaded script

can act as a troubleshooter’s remote eyes and ears. For

example, an area manager might be running a script
which says:

Watch the network traffic and routing protocols

and periodically ping sites off the local net to

confirm outside connectivity. Should outside

connectivity fail, perform traceroutes and report

the results using the out-of-band channel.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 6

Network Management Worms

The term “worm” in networking comes from the John

Brunner’s book The Shockwave Rider, and refers to a

program that moves about a network, from computer

to computer. It has become a rather pejorative word
due to the widely-reported Internet virus of November

3, 1988. However, worms are potentially very valuable.

For example, many years ago at Xerox PARC there were

worms that propagated through the facility’s computers

at night to perform diagnostics on otherwise non-busy
workstations.

In terms of network management, worms are really

scripts that can replicate and migrate. They are really

just the next step in the continuum that begins with

script MIBs. Some researchers in the network manage-

ment community are already working with migratory
programs. They can perform network device discovery

using a worm that migrates through the network and

sends a report back to a central logging address whenev-

er the worm moves to a new machine.

Effective use of worms requires that they be “safe”,

that they have finite lifetimes and limited appetites for
network and computing resources, and that they can

themselves be located, managed, and terminated.

Summary and Conclusion

In this article we have illustrated a few ways that

network management can become something better than
it is today. We have taken a rather opinionated position,

not because we believe we are right (although we hope

we are), but rather to try to ignite new work in network

management.

None of the ideas presented here are impossible. Any

one could be developed and deployed within 12 months.

Some Experiences with Emerging

Management Technologies
Barry Bruins

Cisco Systems

The hype about Web-based management is reaching a

fever pitch, ant it is beginning to sound like HTTP is

the solution to all problems. As network management
professionals, we’ve been exposed to many technologies

that were supposed to solve all our problems (“open”

platforms, CMIP, DME, and so on). What we need to

do is to cut through the hype and understand what role

HTTP technology can play in network management and
where we shouldn’t throw the baby out with the bath

water.

Web technology is being employed in both device

management and network management applications.

We will discuss each in turn.

But, before we begin, a bit of terminology is in order:

� HTTP: a fairly simple session protocol built upon

TCP. It has some unfortunate security pitfalls such
as sending the password in the clear in every

request.

� HTML: a textual presentation protocol designed to

direct presentation software in the appropriate on

screen formatting.

� Applets: downloadable bundles of executable code

that run in the browser’s machine environment.

� Web Servers: software that supports HTTP con-

nections and, typically, forks customized scripts to

satisfy those requests.

� URL: the universal name space for the web that has

been the key to efficient and easy to use navigation

between information sources.

Using the Web for Device Management

To the author’s knowledge, the first use of a Web browser
to perform device management was in a Localtalk switch

developed by Tribe Computer Works. They developed a

simple, easy to use console interface. Devices that have

a small number of parameters can use the features of

HTML 2.0 to get input in simple forms and display device

status in a simple textual manner.

Other companies have done this level of functionality

as well. In the 1980’s, nearly all network devices had

console ports supporting VT100 style terminals. This

was the ubiquitous terminal of the day. Most devices
implemented a TCP stack, many times just to provide

remote access to the console. In the 1990’s, a web browser

has replaced the VT100 as the ubiquitous terminal

of choice. Telnet servers not even installed on many

devices. This observation has fueled the drive for HTTP
consoles in network devices. However, just as console

interfaces were not a good candidate for standardization

when VT100’s were the chosen interface, these web

interfaces are quite different and not good candidates

today.

Using the Web for Management Applications

Web interfaces to network management applications are

also becoming very popular. One of the first well pub-
licized applications was done by the network operations

team at the Stanford Linear Accelerator. The SLAC web

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 7

site allows public access to network performance graphs

and other information. Many companies are using inter-

nal web sites to display network status and performance

information to a wide audience. These approaches
are often much more cost effective and provide much

easier access to information than standard network

management platforms. If you think about the cost of

a Unix workstation running a commercial management

platform, it’s easy to see why this approach is popular.

In fact, many vendors of management applications are
moving as fast as they can to retrofit their applications

for the Web. The network management platform of the

future may only have Web-based user interfaces.

These are examples of how web technology has im-

proved network management. But what’s the next step?
How far can we go? What impact does Java have?

Console Command Mapping

To explore these questions, I ask your indulgence while

I discuss what has been done at Cisco Systems. This is

only to give background on the observations.

Cisco began experimenting with embedding Web in-

terfaces in routers in mid-1995. We wanted to give the
maximum capability to a browser-based user interface

with minimum impact to software image size. Initially,

we didn’t think it was possible to translate the entire

Cisco command language to the new paradigm. However,

after some experimentation, a scheme to use the same

command parsing functions as the TTY interface to
generate web pages was devised.

In internal data structures we had the names of the

commands and the help strings to go with them. The

HTTP code extracts those strings from the parse tables

and formats them in HTML. Each command is turned
into a link. For example, show interface ethernet0
is turned into the URL:

http://routername/exec/show/interface/ethernet0/

This approach means that anyone with a web browser
can issue a router command and the result will come

back into the browser window as scrollable text.

We thought this was interesting and went off to solve

other problems such as organizing these links into useful

subsets, creating forms for specific functions, and so on.

But, it was our customers that surprised us! We found
that customers are building Web-based pages for help

desk guides. As help desk personnel are trying to track

down problems, they follow step-by-step procedures on

web pages. Some of these steps on the web pages are

actually links. It may say “click here to show router
interface statistics.” This would be much more straight-

forward than directing the user to telnet to the router

and execute a command. Through the use of frames, the

procedure can stay on the screen while the result of the

procedure can show in another frame.

Having full device commands as web operations can

greatly simplify automation of simple network opera-

tions tasks. If different links to different devices are

listed in the series of web pages, then multiple devices
can be woven together in the investigation. Keep in

mind that the output that is given to these operations

is designed to be human friendly, and not necessarily

machine readable.

Java-based SNMP

When the Alpha release of Java was made available,
several people thought they should make a Java version

of SNMP. When asked why, the answer was invariably

something like

“If you build it they will come.”

So a particularly persistent individual took the latest

CMU code and started porting. When the first version

came out, people came from all around to see SNMP
running in Java. When this poor soul admitted that

the varbind encoding routines were left in the C pro-

gramming language, he was ridiculed. So he went

back to work and finished the job. Next, fancy Java

gauges were tied to the SNMP stack. When several

gauges monitoring separate MIB objects were put up in
a window for an Interop demo, the criticism continued:

“You’re going to clog the network with this

polling if you have separate PDU’s for each
gauge.”

So a scheme to make the SNMP class an applet in it’s own

right and use inter-applet communications was devised.

This exercise shows that there is no end to the things
that have to be redeveloped when a new paradigm comes

along.

But we weren’t out of the woods yet, there were two

more problems. The first was that this was getting to

be an awful lot of code to download to a browser every

time you want to use it. Second was Java’s network

security paradigm that dictates that an applet can only

open a socket to the server that the applet was served
from. This has a couple of unfortunate implications. If

we want to do SNMP to a device from a Java applet,

that device must be sophisticated enough to be able to

download an SNMP stack over HTTP. We changed the

router to download applets from its flash file system, but
that’s only useful for demonstrations. Additionally, if

we want to put up a browser with gauges monitoring two

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 8

different devices, I’d need two copies of the SNMP applet.

One copy would have to come from each device.

SUN is interested in relieving these and some related

implications, and it seems a more sophisticated applet

security model is on the way. Regardless, some applets
will have to be trusted more than others. I guess

some will ship with “root privileges” sarcasm! These

limitations are not present for Java applications that

are installed in the local environment and run from the

Java interpreter and not from a browser. So the benefit

of platform portability is preserved while the benefit of
dynamic loading of client software is not.

New Paradigms for Web-based Management

There are two new network management paradigms on
the horizon. Both will use the Web to legitimize the

adoption of their model. These new approaches are

coming from both Sun and Microsoft. In each case,

object models are asserted for network devices. These

object models attempt to abstract useful properties and
functions among similar devices. Once abstracted it

will be much easier for programmers and automated

tools to manage these objects. In the case of Sun,

object abstractions are in Java. Sun is attempting to

standardize the look and feel of applets that know how
to manipulate these devices. Their gambit is to either,

get devices managers to implement Java directly in the

devices, or to have a proxy agent that will convert the

new protocol to SNMP. The value is in the user interface

objects that can be reused time and again. These objects

can be combined on a web page with almost no effort.

In contrast, Microsoft addresses the effort required
for their new paradigm with programmer tools that

generate much of the code to use their object abstraction

automatically. They recognize that when an engineer

has a choice he won’t want to write user interface code to

the new model and then write proxy code to map the new
model to SNMP. Most engineers will use SNMP directly

so they can get their work done.

Network and system management nirvana seems to

be stated something like this: if we can make all devices

look alike, we can make management simple. The

trouble is that even if vendors would like to convert all

of their MIB’s to some new object paradigm, the last
thing they want is for their devices to look just like their

competitors. Each vendor will insist on having a way

for their competitive advantage to be manipulated and

displayed. If you add a bell to the box, marketing will

want to see the bell that they defined in the management
system. Commonly useful object models will quickly

decay from the baggage that is placed upon them.

The success of new paradigms is predicated on

them providing significantly more value than the old

paradigm. It remains to be seen if the power of the web

can push these new paradigms over the top.

Why SNMP won’t die

On paper, each new thing that comes along tries to

address the weaknesses of the existing scheme. Some-

times it’s a protocol weakness. Sometimes it’s a new

abstraction to make things simpler. The SNMP SMI
is what saves SNMP. New approaches either try to get

more rigorous to add capability (i.e., inheritance), or try

to make it simpler (i.e., just use HTTP). What we’ve

learned over the years is that MIB definitions serve us

well as “simple to understand contracts” between device
implementors and application implementors. Attempts

to add rigor are met with resistance from device im-

plementors that aren’t being driven by the market for

anything stronger. Attempts to “just use HTTP” will fail

because the definitions of the interfaces won’t be strong
enough to do beyond flashy interfaces.

Better ideas than SNMP come and go. Most fail
because they don’t realize that SNMP represents a pretty

nice balance between the possible and the practical.

Overview of a Web-based Agent
Patrick Mullaney

Cabletron Systems

This article is intended to give an overview of the imple-
mentation strategy for a basic Web-based management

agent. It begins with an introduction to fundamental

concepts involved in the implementation of a Web-based

agent. Next, it examines some details encountered in the

implementation of such an agent. The article concludes
with a discussion of the advantages/disadvantages of this

approach to managing a device.

A Brief Introduction to Web Technology

The Hypertext Transfer Protocol (HTTP) is the primary
transfer protocol used by the World-wide Web. The

HTTP model is an extremely simple one.

The typical transaction is one in which the client

establishes a connection to the server, issues a request,

and waits on a response from the server. The server

upon receiving the request from the client, processes the

client’s request, sends a response, and then closes the
connection.

HTTP Requests:

The most common request methods for HTTP are GET
and POST. The GET method is used to retrieve a resource

from the server. The POST method is used to send

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 9

information to a resource on the server. A resource is

defined as “any data object or service”.
An example of a GET method might be:

GET /ModGenConf.html HTTP/1.0
Accept: image/gif
Accept: image/jpg
Accept: image/x-xbitmap
User-Agent: Lean Mean BrowserBoy/ Strictly beta
If-Modified-Since: Monday, 1-Jan-96 19:04:09 GMT

while an example POST method might be:

POST /ModGenConf.html HTTP/1.0
Accept: image/gif
Accept: image/jpg
Accept: image/x-xbitmap
User-Agent: Lean Mean BrowserBoy /Strictly beta
DATE: 06%2F06%2F96&IP=134.141.48.201&SAVE=YES

A blank line is used to delimit each method.

HTTP Responses:

When the server receives a request from the client,

it locates the resource indicated in the request and
performs the method requested by the client on that

resource and transmits the result back to the client.

In the case of a GET method, the server simply forms

a response by including the resource in the response.

For the POST method, however the server passes the
DATA included in the POST to the resource and receives

a result to include in the response back from the resource.

Responses begin with a status line consisting of the

protocol version of the server followed by a response sta-

tus code, and an optional response status message, e.g.,

“HTTP/1.0 OK”. Typical response codes and messages
include:

� 200: Resource found

� 400: Unintelligible Request

� 401: Unauthorized Request

� 404: Requested Resource not found

� 405: Request method not supported

� 500: Unknown server error

� 503: Server capacity reached

Following the status line are one or more header/value

pairs and then the actual data.

Similar to the request, the response then includes an

optional list of header/value pairs. Two of these headers

fields, Content-Type and Content-Length, indicate

the media type and the length, respectively, of resource
being returned. The media type is given as a MIME type.

MIME is defined in RFC 1521, and can be used to identify

any media encoding type including application-specific

types.

Authentication:

HTTP uses a simple, extensible challenge-response au-
thentication mechanism.

The server issues a authorization challenge by sending

the client a 401 (unauthorized request) response. In the
response, it identifies one or more supported authen-

tication schemes along with whatever parameters are

necessary for achieving authentication via that scheme.

One of these parameters indicates a realm, or protection

space, on the server. It allows the server’s resources
to be partitioned into multiple protected regions, each

with it’s own authentication scheme and/or authorization

database.

The client, upon receiving a 401 response, can re-issue
the request with a Authentication header that iden-

tifies the authentication scheme in use along with the

necessary credentials to prove its identity for the realm

in question.

RFC 1945 defines an authentication mechanism called

“basic”, which all clients are encouraged to support it.

This model employs user-ID/password credentials for a

realm.

The Hypertext Markup Language:

HTML is a platform-independent document description

language. The language is a subset of SGML, which is a

more elaborate ISO document standard. (This should

sound familiar to SNMP people!) HTML was design

to be used over low bandwidth communications links.

Ironically, this makes it ideally suited for exporting for-
matted information from management agents, which are

generally embedded systems. The general philosophy

of the language is to not control every aspect of the

display. Through the language, the page designer gives

hints to the display station as to the layout of a page,
it avoids the overhead of controlling every aspect the

display down to the pixel level. This minimizes the

amount of information that needs to be transferred to

display a particular resource (i.e., a document). This lack

of complexity gives HTML, regardless of the particular
document, it’s familiar “look and feel” and ease of

operation.

Proper page design philosophy has been to minimize
bandwidth used by minimizing the amount of informa-

tion a document contains (image content in particular).

This philosophy also benefits management agents, which

generally don’t have a large amount of persistent storage,

by only requiring them to store a minimum of informa-

tion at the agent.

HTML uses “markup” tags to denote regions of text

as having specific characteristics. The tags serve as

instructions to the browser on how to render a region
of text. These tags are portions of text surrounded by

the less-than (<) and greater-than (>) characters. For

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 10

example, the tag indicates that the browser should

bold the text following tag and a indicates to the

browser that the bolding should end. HTML provides

tags for formatting of text, inclusion of graphic images,
navigation to other documents (hyperlinks), standard

form controls (text boxes, radio buttons, and so on).

The web-based agent implementation described with-

in this article exports HTML formatted management

documents to a standard web-browser. No specialized
management station software is needed to use the agent.

There are three issues to consider: document design,

agent implementation, and authentication.

Document Design

Our web-based management agent has three distinct

classes of documents: static, dynamic, and form.

The static document is a document whose contents

never change. It can be built into the agent in the

form of a static data structure, put in the agent’s
persistent storage, or referenced by the agent by using a

URL naming a supporting device (a supporting server

or another agent). Examples of static documents

are graphic images, help/informational documents, and

HTML documents used entirely for the user’s navigation
to other documents (via hyperlinks).

The next type of document is a dynamic document.

This document’s contents have the potential to change

over time. The contents of a dynamic document are

assembled at run-time upon a request for the document
from the client. This is the most common type of

document supported by our agent. It can be used

for many purposes such as dynamically displaying the

current values of statistics kept at the agent, and current

values of user configurable operational parameters at the

agent.

The final type of document is a form document.

This type of document is used to modify the current

operational mode of the device or agent. Form documents

can be either static or dynamic themselves. The controls

(e.g., textbox submission fields, two-state buttons, or
multi-choice selection boxes) on forms often have current

state values associated with them. These state values

must be inserted into the control upon a request for the

form document.

The layout of documents for our agent is done with
the aid of a commercially-available HTML layout editor.

This tool is augmented by an in-house developed tool

which gives the document designer the ability to asso-

ciate certain fields within a document with dynamic (or

“live”) data within the device and, in the case of form
documents, supply an action method for each control

element to be executed upon form submission.

Document and Agent Implementation

Once the HTML document has been designed, a code

generator is run on the document to generate supporting

code and data structures (as a C++ class). The supporting
code consists of methods for registering the document

with the agent, the document name method, the docu-

ment serialization method, the document authentication

realm method, and for a form document, a method

for the processing of control elements submitted in a
POST request. The registration method simply adds the

document to a directory of documents maintained by the

agent. This directory is simply a data structure used to

hold and retrieve documents by name(Request-URI).

Upon a request from a client, the agent searches
the directory using the Request-URI as a key to find a

particular document.

For a get request, the document’s serialization method

is called when the agent receives a request for the

document. The results of the serialization method are

the current contents of the document. These results are
returned as the data section of the HTTP response.

In the case of a POST request, the document’s serial-

ization routine is called after the document has processed

the data section of the request. The document’s control

element parsing method separates the data section of the
request into control/value pairs. Each pair represents

the submitted value of a specific control on the form.

Then, for each control, the parsing method calls a specific

user-supplied method (defined in the document design

step), passing the value associated with the control. The
serialization results for a form after processing a POST

method is completely up to the form designer. The results

could simply be the form document with the new values

used in the form submission, or be a document indicating

the success or failure of the submission.

The agent itself can be configured to be single- or
multi-threaded. The advantage of using multi-threaded

server is primarily increased throughput. For many

management implementations, a singly threaded server

is fine. (Browsing a Web-based management agent isn’t

particularly exciting!)
Another advantage of a multi-threaded agent is that

when used with persistent connections, the agent will be

able to service more than one client at a time. Persistent

connections are aimed at solving the latency problem

with TCP slow-start. Persistent connections were added
ad-hoc in HTTP 1.0 and will become standard in HTTP

1.1. The disadvantages are possible manager conflict

and resource consumption issues.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 11

Authentication

The agent uses the basic authentication scheme de-

scribed in the previous section.

It uses two authentication realms (protection spaces)

within the device, read-only and read-write. The agent

maintains two passwords, one for read-only access and

one for read-write access, which are stored in persistent
storage on the device. (This is quite similar to SNMP,

and on some our devices, the SNMP community strings

will be used as the passwords). A read-only password

only allows the client (browser) to access pages in the

read-only realm. The read-write password allows access
to both realms.

Each document in our agent is associated with one

realm. If a client fails to authenticate itself with the
agent for a particular document, the agent challenges

the client with that document’s realm (read-only or read-

write). The agent can determine a document’s realm us-

ing the document’s authentication realm method, which

simply returns a string indicating the realm. In our
implementation, informational documents typically only

require a read-only level of access, but may occasionally

require read-write if they contain privileged information.

Form documents are generally not accessible at the

read-only level of access.

Now let’s look at how this approach to Web-based man-

agement compares to the traditional SNMP approach.

Advantages over the SNMP Approach

The advantages of using HTTP to export HTML-based

management screens from a device are many.

First, there is no specialized management software

necessary to configure or monitor a device.

Second, the versioning problems that typically occur
when an older agent or manager doesn’t support the

new and possibly required features of the other are

eliminated. These problems occur when either a new

MIB is supported at the agent and not supported

(displayed) at the manager, or when a new version
or feature of the manager expects a minimum of MIB

support from an older agent. By using a Web-base agent

to export screens directly, both agent and manager do not

need to be updated simultaneously. This same problem

is only exacerbated in a multiple vendor environment.

Many vendors supply devices requiring some level of
vendor specific MIB support. This complicates the job

of the management station vendor by requiring them

to support additional screens for these vendor specific

MIBs. (MIB browsers are simply inadequate for this

task!) Often, this leaves the network manager with
no choice but to buy specific management applications

for each vendor’s device and then learn to use all of

them. By delivering the management information via

a Web-based agent, the application is delivered with the

network device and the common familiar interface of a

Web browser exists for all applications.

The next major advantage is that of platform-

independence and location-independence for the applica-
tion. A network manager can access his Web-controlled

network from anywhere, on any platform. All that

is needed is a general-purpose Web browser, which is

standard equipment for the vast majority of platforms.

A final major advantage is seamless integration with

on-line documentation. Context-Sensitive help and doc-

umentation may be accessed via hyperlinks embedded
directly into the agent’s management pages. Additional-

ly, configuration and management can be driven entirely

from an on-line instruction manual, in tutorial fashion.

Possible Future Advantages

Another area where HTTP could be applied is in the

transport of unformatted management information be-

tween communicating entities. Because HTTP uses
TCP, it can transfer large amounts of data in a single

transaction. A management application layered on

HTTP can transfer large amounts of data to/from the

device without having to break up of data for the

transport layer.

Also, security options for HTTP are becoming avail-

able. Security for commercial applications using HTTP
over the Internet will force a solution in this area. A man-

agement application that uses HTTP can then leverage

these security features. In addition, using one security

mechanism between multiple applications would greatly

ease the burden for network administrators who often

have to configure security for all applications.

Disadvantages over the SNMP Approach

There are a few possible disadvantages and concerns

with using this technology for network management

applications.

The first issue is the latency of HTTP when used for

small transactions. This is due to the protocol being

layered over TCP. This has been raised as an issue

against using HTTP as the transport for generic MIB

information (instrumentation at the agent). Latency
for HTTP is an issue for ALL HTTP transactions, not

just in this specific case. The HTTP community is

aware of the problem and are working toward solutions.

One solution is to use persistent connections, and thus

amortize connection overhead over multiple connections.
The theory is that if you want one resource from a server,

you are probably going to want another.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 12

The next issue of concern applies mainly to the ap-

proach of exporting formatted management information

from agents. The concern to this approach would be that

the burden of display is placed on the agent. This would
be a valid concern for only the “lowest” of low end devices.

This overhead is fairly minimal and varies based on the

desired complexity of the documents exported from the

agent. It primarily manifests itself as additional memory

overhead (for document formatting) on most agents.

The last issue of concern is that HTTP requires a TCP
implementation. Many devices already support other

applications that require TCP, e.g., telnet, so this will not

be an issue for them. In fact, for those implementations

with existing telnet support, an HTTP/HTML implemen-

tation could replace the telnet functionality, and thus
require little or no extra memory overhead.

In Conclusion

By now, it should be clear that SNMP and HTTP share

a number of similarities.

Both provide the client (manager) the ability to modify

or retrieve specific resources within a server (agent).

SNMP provides a standard mechanism for identifying
resources and a standard representation of those re-

sources (a media type). HTTP provides the ability

to identify and transport resources of any media type

between communicating entities.

Devices that support both SNMP and HTTP will

duplicate functionality. This is why it may be desirable to
have an HTTP/SNMP interoperability standard. Inter-

operability with SNMP could be a very simple matter

in my opinion. It could be as simple as defining a

new MIME type for SNMP operations. This type could

be the current encoding standard for SNMP, BER, a
newly defined encoding standard, or both. Current

SNMP operations over HTTP could then take advantage

of the protocol’s ability to transfer large amounts of

information, and a new get-subtree operation could

also be defined to explicitly take advantage of this

feature, as is currently under discussion on the SNMP
mailing list <snmp-request@psi.com>.

The CyberAgent Framework
Ray Burns, Mary Quinn

FTP Software

As operating systems vendors embed the platform-

independent Java language into their kernels, new op-

portunities for distributed network management arise.

Java applications and applets written for particular
management tasks can easily be run from a variety

of platforms. While this is an improvement over the

os-dependent applications which exist now, these types

of applications rely on the SNMP protocol and are limited

in the types of functions they can perform.

CyberAgent is FTP Software’s intelligent agent tech-
nology based upon Sun’s Java programming language.

An intelligent agent is a mobile, independent piece of

software that travels the network and accomplishes

tasks remotely. CyberAgent classes supplement the

Java Development Kit and provide templates for agent

development.
CyberAgent technology provides a remote execution

capability that, when integrated into management appli-

cations, may go a step beyond SNMP-based management

applications. Using intelligent agent technology, you

can write agents for specialized network management
purposes.

This article discusses the CyberAgent framework,

agent development in network management and how

you can write enhanced SNMP management applications

using the CyberAgent technology.

CyberAgent Features

There are for key features of the CyberAgent Framework:

� mobility among TCP/IP connected computers;

� platform-independent among Java-enabled comput-

ers;

� choice of security levels; and,

� ability to carry data and programs.

CyberAgents are mobile agents and the infrastructure
that supports their mobility. A CyberAgent is a mobile,

autonomous program written in the Java programming

language. Application Programming Interfaces (APIs)

transform an arbitrary Java application into a platform-

independent CyberAgent that travels from computer to
computer within TCP/IP networks under the sender’s

control. CyberAgents can also deliver and execute

platform-dependent programs within a choice of security

models.

Mobility among TCP/IP connected computers

CyberAgents move between computers on a network

to perform their tasks. Within limits imposed by the
infrastructure and the chosen security model, Cyber-

Agents decide when and where to move. With one

exception, CyberAgents may only visit computers on

their destination list, a list of computer user and machine

names (or IP addresses) defined when a CyberAgent is
launched. In addition, CyberAgents can visit the “home”

computer that the CyberAgent was launched from.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 13

Another factor governing CyberAgent movement is the

travel plan. A travel plan describes the general mode

that CyberAgents visit computers on the destination

list and, like the destination list, is defined when a
CyberAgent is launched. You can choose between two

travel plans at launch time: radial or sequential.
In a radial travel plan, a CyberAgent appears to

travel from the home node to each of its destination
nodes simultaneously and then return home. Actually,
multiple copies of the CyberAgent are dispatched in
rapid succession, one to each destination node. If so
programmed, each of the CyberAgent copies may then
return to the home computer.
+------------+ +------------+
Node A		Node B
Windows 95		UNIX
+------------+ +------------+

\ /
\ /
\ /
\ /
\ /
\ /
+------------+ CyberAgents are
| User’s | simultaneously sent
| Management | to each node, they
| Station | collect data and
+------------+ return home
/ \

/ \
/ \

/ \
/ \
/ \

+------------+ +------------+
Node C		Node D
Windows NT		Windows 95
+------------+ +------------+

In a sequential travel plan, a CyberAgent is launched
from the home node and travels to node A where it
performs a task and maybe collects some data. After
completing its task on node A, it continues its journey
to node B and performs its task on node B. After
completing its task on node B, it repeats the process of
traveling to the next node and performing its task until
it reaches node D, the CyberAgent’s last stop. Then, if so
programmed, the CyberAgent returns its data (and even
itself) to home. The sequential travel plan is sometimes
described as a store-and-forward plan.
+------------+ +------------+
User’s	CyberAgent	Node A
Management	-------------->	
Station	launched	Windows 95
+------------+ +------------+

ˆ |
| | CyberAgent
| CyberAgent returns | collects data
| home with results | and goes to
| | next node
| V

+------------+ +------------+
Node D		Node B
	<--- <---	
Windows 95		UNIX
+------------+ +------------+

The exact sequence of computers visited can be altered
by the CyberAgent under program control. While re-

stricted to the destination list, the CyberAgent can move

at will among those computers, collecting information,

depositing data in local files, executing Java and non-

Java programs, sending data home, and performing any
function that a program confined to a single computer

can perform.

Asynchronism:

CyberAgents may move from one computer to another

without waiting for tasks started on the first computer

to complete. Consequently, multiple copies of the same
CyberAgent may be in various stages of execution at

multiple different computers in a network. Each CyberA-

gent copy executes completely independently of any other

copy, asynchronously generating data as programmed.

In this way, a single CyberAgent can harness the power

of every computer on the network.
While this feature is powerful, it raises the issue of

coordination between CyberAgents and the information

they may collect, especially when multiple CyberAgents

(or multiple copies of the same CyberAgent) arrive at

the same computer. CyberAgents communicate (and
coordinate) through CyberAgent messages which may

contain any native Java object. Information collected

asynchronously may be aggregated into a single file

at the home computer through synchronized file access

methods that are transparent to the CyberAgent pro-
grammer.

Control Flow Structures:

New control flow structures are required to exploit the

power that mobility and asynchronism provide. Fixed

(non-mobile) programs use for and while control flow

structures routinely to execute essentially the same set of
instructions many times. Similar control flow structures

for CyberAgents execute essentially the same set of

instructions independently on many computers.

Mobility control flow parallels control flow for fixed

programs; both have initialization, iteration, and ter-
mination phases. Mobility initialization occurs prior to

CyberAgent launch, iteration is the code executed at

each computer on the destination list and termination

occurs after the CyberAgent returns home. Each of these

phases is implemented as a CyberAgent Application
Program Interface (API) method.

A CyberAgent controls its own movements by deter-

mining where it is, setting its target destination (where

it is to go next) and then sending itself to the target

destination. The normal case is to go to the next

destination on the list. Alternately, the CyberAgent may
decide to go to any other destination on the list or even

to break out of the destination list and send itself home.

Sending itself home is analogous to a break statement

in a fixed control flow structure.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 14

Platform-Independence

CyberAgents can be sent to and execute on any computer

on a TCP/IP network with a Java runtime environment

and CyberAgent classes. Java runtime environments

(essentially a Java interpreter and class loader) are
available for many different platforms and operating

systems. In particular, Java runtime environments are

available for most Unix systems along with Windows

NT and Windows 95. Because many computers on

TCP/IP networks support one of the above operating

systems, Java applications on these networks are largely
platform-independent. CyberAgents inherit platform

independence from Java.

Choice of Security Levels

Normally, network security comes into play when we
want to execute, read or retrieve something from a

server. Network security protects the resource (program,

information or file) from unauthorized access. CyberA-

gents introduce new security requirements: instead of

initiating the use of a resource from a server (pulling), a
CyberAgent may be sent (pushed) to a computer bringing

programs or data without active involvement. Most

users would like to restrict such access to trusted users.

Upon arrival of a CyberAgent at a computer, the user

has legitimate concerns about authentication (is this
CyberAgent from a trusted source), integrity (has this

CyberAgent been altered), and privacy (can anyone else

access the contents of this CyberAgent). To address

these concerns, CyberAgents offer a choice of three

security modes: clear, password, and encrypted using

Data Encryption Standard (DES) or RC2 encryption.

In clear mode, CyberAgents are not password pro-

tected or encrypted and all CyberAgents that arrive

are accepted without any attempt at authentication
or integrity checking (appropriate if everyone on your

network is trusted).

In password security mode, CyberAgents are not

encrypted but only CyberAgents signed with a password
shared by you and the sender are accepted. Password

security mode provides a degree of authentication and

integrity verification. Prior to launch, the password

is hashed with the CyberAgent’s contents to generate

the password signature or Message Authentication Code

(MAC). When the CyberAgent arrives at its destination,
the recipient uses the common password to recover the

MAC from the CyberAgent signature. The recovered

MAC is then compared to a new MAC computed on the

CyberAgent’s contents. Successful signature decoding

and MAC comparison indicates that the CyberAgent did
indeed arrive from a trusted source and was not altered

in transit.

In DES security mode, CyberAgents are both encrypt-

ed and signed with a key (known to the recipient and

the sender). The DES digital signature provides strong

authentication and integrity assurance. Prior to launch,
the sender encrypts the CyberAgent with the private key.

Then the key is hashed with the CyberAgent’s contents

to generate the digital signature or MAC. When the

CyberAgent arrives at its destination, the recipient uses

the private key to decrypt the CyberAgent and to recover

the MAC from the CyberAgent signature. The recovered
MAC is then compared to a new MAC computed on the

CyberAgent’s contents. Encryption ensures that privacy

is protected and successful signature decoding and MAC

comparison indicates that the CyberAgent did indeed

come from a trusted source and was not altered in transit.
RC2 encryption is similar to DES and is available for

customers outside the United States and Canada.

Each of the security modes can be applied to CyberA-

gents from individuals or from a member of a community.

A community shares the same password or key among

all its members and is more convenient than having a
separate password or key for every individual with whom

you want to exchange CyberAgents.

Ability to Carry Data and Programs

CyberAgents may carry data and programs with them

to their destinations. Both data and programs are

carried as appendages to the CyberAgent itself, but still

protected by the selected security mode. Programs are

not limited to the Java language; they may be in Java
or may be platform-dependent: each may be executed

with a CyberAgent API. A CyberAgent may carry several

platform-dependent versions of a program on its journey

and execute the appropriate version depending on the

platform it lands on.

Java Runtime Requirement

A Java runtime environment and CyberAgent classes

must reside on each computer in a network that receives

and executes CyberAgents. Most major operating
systems vendors have made public commitments to

embedding Java runtime into their operating systems,

so this requirement may be short-lived.

Performance Limitations

Agent execution speed depends primarily on the Java

interpreter and the hardware platform. Assuming the

same platform for speed comparisons, the current Java

interpreter (version 1.02) executing Java code is slower
than executing compiled native C language code by a

factor of about 30. However, several vendors offer

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 15

just-in-time Java interpreters that mitigate or remove

this limitation, depending on how iterative the Java

application (or CyberAgent) is. Just-in-time compilers

accelerate execution by retaining the native instructions
generated by the interpreter and re-using the native

instructions the next time the same code sequence is

encountered. So if a CyberAgent spends most of its time

in the iteration phase (the normal case), then it benefits

greatly from just-in-time interpretation.

Applications

Configuration and performance management are two

areas of network management where CyberAgents seem

particularly well suited. Data must be collected from
a device in both areas. The Java environment and

CyberAgent classes provide access to all information

available on a machine, whether provided by the operat-

ing system, application programs, a DMI Management

Interface or even an SNMP Agent. The local retrieval
mechanism can be determined by a CyberAgent based

on the hardware device operating system. CyberAgents

provide an alternative transport and data collection

mechanism to SNMP, reaching information not available

within the SNMP framework and keeping the data

collected confidential.

Even SNMP-instrumented data may be impossible

to access in certain cases. For example, because no

industry-standard extensible agent protocol exists, soft-

ware from multiple vendors sometimes cannot coexist
on a device. In these cases, each vendor provides an

SNMP agent for managing their product. Due to SNMP

port contention, the user is forced to choose one agent

and must forgo remote access to data normally available

via the others. Using a CyberAgent, this data may

become remotely accessible if an alternate local method
for retrieval of the information is provided by the vendor.

CyberAgents can be used to enhance SNMP-based

fault detection and management applications. These

applications can detect error conditions either actively
(such as by device polling), or passively (such as by

receiving traps and informs from the devices). The

information is passed to the network administrator

either visually, by sounding a bell or via e-mail. In

general, however, notification that a condition exists is

the most that the application can do. Sometimes, these
conditions are time-critical and cannot be diagnosed or

rectified after the fact. Historic logging of data indicates

that problems occurred but there is no way to reconstruct

the conditions that caused them. Enterprise-specific trap

handling is an application for CyberAgents. In the case
where the device is sending notification of an internal

problem, an agent can be dispatched to gather more

detailed information about the state of the system and

return it to the manager.

CyberAgents can be used as components in a system

to monitor (and possibly resolve) IP addresses conflicts.

CyberAgents can periodically update a centralized net-

work database of IP addresses in use and detect when

a conflict occurs and determine which user is authorized
to use the address. Another CyberAgent can then notify

the unauthorized party to change their address. In some

cases, depending on network stack vendor and operating

system, a CyberAgent may even replace the duplicate

with an unassigned address.

CyberAgents are also good candidates to perform soft-

ware distribution and updates. A CyberAgent can carry

a software installation package to target computers, copy

the package to the target computer, notify the user that
new software files are available and prompt the user to

initiate installation.

In Conclusion

Applications for CyberAgents are just beginning to be

explored. CyberAgents and Java open up new oppor-

tunities for managing networks of devices because of
Java’s platform independence and CyberAgent mobility.

CyberAgent mobility expands the scope of device control

and monitoring because a CyberAgent has local access to

all data and controls on a device. CyberAgents can be key

players in network management, either stand-alone or as
components of SNMP-based management applications.

The SNMP Framework
Keith McCloghrie

Cisco Systems

In the last two issues, this column examined most of the
SNMPv2 changes which are incorporated into the latest

RFCs. Specifically, in the previous issues, we examined

the changes to the SNMPv2c administrative framework

(RFC 1901), to the SNMPv2 protocol (RFC 1905) and

transport mappings (RFC 1906), and to the SMI (RFC
1902) Textual Conventions (RFC 1903) and Conformance

Statements (RFC 1904). In this issue, we’ll cover the

remaining changes: to the SNMPv2 MIB and to the Co-

existence document.

Changes to the SNMPv2 MIB

RFC 1907 has a number of changes from RFC 1450:

� The system group from MIB-II is now included in

this MIB.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 16

� References to the Party MIB (RFC 1447) have been

removed.

� The SNMP-statistics counters defined in RFC 1450
(snmpStatsPkts, and so on) are deleted because

many of them were defined through references to

the administrative framework. They are replaced

by including the snmp group in MIB-II. However,

only some of these objects from the snmp group are
defined with a status of current: snmpInPkts,

snmpInBadVersions, snmpInASNParseErrs, and

snmpEnableAuthenTraps; the rest of the snmp

group from MIB-II is obsoleted.

� Two new objects are defined: snmpSilentDrops
which counts the number of received requests which

were silently dropped because the appropriate re-

sponse message was too large to transmit; and

snmpProxyDrops which counts the number of re-
quests received by a proxy agent because a proxy

agent failed to forward them successfully.

� The Object Resources (sysOR) group is moved to

be under the same subtree as the system group,
with sysORID now specifically defined as being

the value of an invocation of the AGENT CAPA-

BILITIES macro. A new object is also defined

within the sysORTable: sysORUpTimewhich is the

timestamp of when the resources corresponding to a

sysORID value were last instantiated.

� The counter of the number of traps sent to a

particular destination is deleted (since it referenced

the administrative framework).

� the definitions of the linkUp and linkDown traps

are deleted (since they are included in RFC 1573).

� a NOTIFICATION-GROUP containing coldStart
and authenticationFailure is defined. The

conformance statement requires implementation of

this group.

Changes to the SNMPv1/v2 Co-existence

RFC 1908 defines a number of changes from RFC 1452:

� - There are two changes to the procedure for up-

dating an SNMPv1 MIB to conform to the SNMPv2

SMI:

– the

MAX-ACCESS of an auxiliary object no longer

needs to be changed to not-accessible.

– an object defined as an enumerated INTEGER

with a zero-valued enumeration does not now

need to be obsoleted.

� When updating a definition of an SNMPv1 TRAP

(other than the original six standard traps) to an

SNMPv2 Notification, the OBJECT-IDENTIFIER

name of the notification is formed by extending the
OID of the Trap’s ENTERPRISE clause with two

sub-identifiers; the first extra sub-id is zero, and the

second is the integer value of the trap’s definition.

This insertion of a zero sub-identifier is required

so that the same notification is generated by an

SNMPv2 implementation of a converted definition
of an SNMPv1 trap as is produced by the conversion

by a proxy agent of the same SNMPv1 trap.

� An INCLUDES clause (e.g., in an invocation of

an AGENT CAPABILITIES macro) is allowed to

reference an OBJECT IDENTIFIER subtree defined
in an SNMPv1 MIB; such a reference is defined as

including all mandatory leaf objects underneath the

referenced subtree.

� The destination to which a proxy agent sends traps

is defined as implementation-specific (rather than

being defined by the administrative framework).

Frequently Asked Questions
Kaj Tesink

Bell Communications Research

Back to Basics.

Q: MIB Browsers v. Compilers

Could someone please explain me what is the difference

between a MIB Browser and a MIB Compiler?

A: Response:

Tom Georges provided the most concise answer:

A MIB Browser is an application that allows one to

view the available variables in an SNMP agent’s MIB by

issuing a get request, (or possibly a series of get-next
requests. Most are terse and low level, meaning that
they convey the raw information available from the

device and make no decisions on the data, which a

network management application would do.

A MIB Compiler is a program or script that converts a
MIB file in ASN.1 notation (format of a MIB definition)

to a file that can be read and interpreted by a specific

network management application. A MIB compiler may

also be used in the generation of SNMP agent code frag-

ments and/or structures. Some network management
applications do not use a MIB compiler but parse the

ASN.1 file directly.

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 17

Q: Use of OIDs

Are there any requirements regarding the use of OIDs?

For example:

1. A valid OID must start with the first subid to be 0,

1 or 2. If the first subid is 0 or 1, then the second

subid MUST be in the range of 0-39 inclusive.

2. I assume any objects to be managed via SNMP must

be registered within the internet subtree, so MIBs

to be monitored will start with OIDs of 1.3.6.1 and
the 5th subid will be in the range of 1-6 inclusive

(assuming SNMPv2 is accepted).

3. I thought, that any MIB has to be registered

under internet somewhere. Same like with

sysObjectID and such, they will be registered

under enterprises somewhere, right?

A: Response:

1. Right.

2. Wrong. It can be any OID. SNMP doesn’t care. Your

code shouldn’t either.

3. Wrong. It can be any OID. SNMP doesn’t care. Your

code shouldn’t either.

Q: Use of OPAQUEs

I’m still confused about this Opaque data type. Should I
use it?

A: Response:

No, no, no. Opaque once seemed like a good idea

but was quickly dreaded by implementors. It is still

around for backward compatibility reasons but new use
is prohibited. RFC 1902 explicitly states that “The

Opaque type ... shall not be used for newly-defined object

types.” Consequently, kzm replies to an Opaque usage

proposal:

“In particular, you claim that the Opaque so-

lution can be implemented by method routines

without changing the agent’s protocol engine,

and by applications without changing the plat-

form’s protocol engine. But even if that is true,
it is only because you are having the method

routine and/or application take over part of the

functionality of the protocol engine, i.e., you

are advocating that both method routines and

management applications implement their own
ASN.1 encoding/decoding functions. In fact,

it is precisely because Opaque requires this

kludge that the SMI prohibits any further use of

Opaque. If it wasn’t for backward compatibility,

Opaque would not be defined in RFC 1902.”

Industry Comment
Marshall T. Rose

Dover Beach Consulting

In terms of failures, the inability of the SNMP communi-

ty to standardize on an administrative framework runs

a poor second to its failure to move beyond “instrumen-
tation” in products to “solutions” in the marketplace.

However, developments in Internet technologies other

than SNMP now give us the opportunity to re-think

device management, the way in which operators interact

with networking devices, such as a router, hub, or bridge,
(or a logical entity comprised of many physical entities

with a single management interface).

This issue of The Simple Times may be controversial

in that it provides a forum for SNMP friend and foe to

suggest and analyze emerging management technologies

and their relationship to SNMP. Even so, it is impor-

tant to explore these topics because SNMP and these
emerging technologies will have to become good, life-time

neighbors. As such, we should understand the synergy

between them, both to allow SNMP to prosper, and to

ensure that the new technologies aren’t used beyond

their limits.

In this editorial, we’ll focus primarily on the market-

place to understand one of SNMP (few!) failures, and the
opportunities which have arisen.

Incentives in the Marketplace

In any market environment, one can understand the

outcome by studying the players and their incentives. At
present there are three sets of players in the networking

management market:

� agent/NMS developers;

� device/application vendors; and,

� operators.

The Internet-standard approach to networking man-

agement has been to achieve a balance between the

sets of players and between the players in each set.

For example, SNMP represents a “shared contract”

between an agent and a management station as to
how instrumentation is to be defined and interpreted.

The market has achieved a steady-state under these

balances, but unfortunately the outcome is less than

optimal – lots of instrumentation is available to manage,

but few management solutions are available to operators.

The reason is due to how value is perceived and how

it is actually added. At present, device vendors receive
little benefit for their efforts at making their products

manageable – they can add only instrumentation. In

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 18

order for the customer to perceive the value, the device

vendor must rely on NMS developers and application

vendors. This makes it difficult for a device vendor to

differentiate themselves in their segment.

Further, standardized instrumentation is only defined

for those aspects which are common to most devices.

With every device having some proprietary functionality

and most protocol standards being interface specifica-

tions, rather than functional specifications, full instru-

mentation, especially for configuration, always requires
some aspects which are implementation-specific. This

presents an insolvable problem for application vendors

who must focus on standardized instrumentation in

order to appeal to all device vendors in a segment.

Thus, the operators are provided at best with incomplete
solutions.

In brief, there is no longer any incentive towards

innovation in device management, there is only an

incentive to standardize “more MIB variables”. We’ve

done a good job at this. (Although one might observe

that the number of new MIB modules has declined in
recent years, suggesting that this too is running out of

steam.)

Regardless of the breadth, width, and quality of

standards defining instrumentation, a failure to achieve

solutions in the marketplace is a failure of standardiza-
tion. Does this mean that SNMP is a failure? No, of

course not. But clearly, the current arrangement has

achieved steady-state for device management, and, by

itself, SNMP has proven inadequate.

So, we need to change the incentives! Note that

there are only two first-tier players: device vendors and
operators. Our solution must enable their roles to have

a greater influence on the market. To do this, we’ll

take advantage of an unrelated development in Internet

technology.

A New Model for Device Management: DM/W3

The latest client/server craze is called the intranet and

it refers to the practice of defining a network service
using HTML and HTTP as the client/server interface.

Provisioning a service involves writing server-side appli-

cations without doing client development – clients are

simply Web browsers. While one can argue about the

technical merits of the Web protocols, one can not argue
with the success they have achieved in the marketplace,

for good or ill.

At present the client/server model for device manage-

ment divides its tasks as:

� the server is an agent running on a device;

� the client is a management application running on

an NMS;

� the “control” rules are defined by SNMP; and,

� the “data” rules are defined by the instrumentation.

Suppose we were to co-locate an HTTP server with an

SNMP agent, and then provide a scripting language that
executes on the device to manipulate the instrumenta-

tion and generate HTML. The DM/W3 model divides its

tasks as:

� the server is an HTTP daemon on the device;

� the client is a Web browser;

� the “control” rules are management applications
residing on the device; and,

� the “data” rules are defined by HTML.

We could define URLs which take the form:

http://device/application

where device is the domain name (or IP-address) of

the device and application, if present, referred to
an script available on the device. (If application
wasn’t specified, a page would be returned that specified

the scripts available.) In most cases, a form would be

returned asking for the parameters with which to run

the application.

This clearly provides a non-SNMP framework, and
we’ll use this fact to our advantage. For example,

here’s how we’ll dispose of the usual administrative and

security problems:

� authentication: up to the HTTP server;

� security services (message integrity, replay protec-

tion, privacy): use either SSL or S-HTTP; and,

� authorization: up to the application based on the

authentication and security services.

Our point is not to try and export an SNMP administra-

tive framework through either the Web or SSL, rather to

employ a parallel framework.

A New Set of Incentives

To understand the value of this approach, consider how
the incentives for device management have changed. Be-

cause applications run server-side (on the device), device

vendors now control applications which get written for a

device.

This control now gives them an incentive to differen-
tiate their products from others in the same segment.

Use of Web technology provides an open interface to

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 19

vendor-proprietary functionality. As such, device ven-

dors are rewarded when they spend more time on adding

management to their products.

For example, a device vendor might write one or

two dozen different management applications which are

carefully tailored to exploit the special features of the

device. Ease-of-use, functionality, performance, and
other issues can be high-lighted. When an application

completes, the page returned can contain links for fur-

ther information, such as invoking related applications

with preset parameters, or fetching help information,

and so on.

No longer is support for network management simply

a checklist item for device vendors – it becomes an

important consideration for decision-makers. Indeed,
operators will now wield their purchasing power based

on smoking guns, not finger-pointing. If a vendor’s

device lacks management solutions, the operator needs

blame only the device vendor, not the NMS developers or

application vendors. However, operators will now take
on a new responsibility – they will have to clearly express

the kinds of functionality they expect to see in the devices

now that the middlemen aren’t clouding the issue.

Device Management Revisited

SNMP will still be used for device management – by

enterprise management applications running on an NMS

– to gather information, respond to notifications, and so
on. While it appears to be hopeless to use standardized

instrumentation to effectively management individual

devices, this instrumentation is valuable, precisely be-

cause it does smooth over the differences between devices

in a heterogeneous network.

How does DM/W3 impact the other players besides

those in the first-tier? Agent developers will still

provide SNMP engines to device vendors, along with
a low-impact HTTP server and a device-side scripting

language. But, NMS developers will need to integrate

their products with a Web browers. Although many

vendors working on applications for device management

will have to become more involved with device vendors,
things will probably be easier for client-side application

vendors as they switch from windowing protocols to

HTML programming.

The Role of Standardization for DM/W3

Although the Web protocols have achieved success in

the marketplace, HTTP is technically sub-standard in

comparison to other Internet protocols. (Don’t blame
the designer, HTTP wasn’t designed to operate in today’s

Internet.) So, over time a new HTTP-like protocol should

emerge, one which honors the first principles of SNMP

and is thereby server-friendly. True, an HTTP server

won’t be as lightweight as an SNMP agent, true it uses

TCP instead of UDP, and so on; even so, it is important
to optimize HTTP to be widely-scalable, and this is why

adherence to the SNMP design philosophy, wherever pos-

sible, is critical. Naturally, this new protocol isn’t specific

to device management, all Web-based applications could

make use of it.

I predict that two areas in the IETF will see consid-

erable change. The Operational Requirements area will

find itself the center of activity in specifying functional
requirements (the “what”, not the “how”). Further, the

Network Management area will likely be disbanded:

each of its few remaining ongoing instrumentation

efforts can be defined in the appropriate area of the

IETF, and the remaining standardization efforts, those

dealing with the “internal organization of the SNMP
layer” (IOSL) such as v2 security, agent extensibility,

rmon/entity mib, etc., are probably best put in the

Applications area.

While it might seem strange to suggest that the NM

area will eventually go away, this is perhaps inevitable.

There simply isn’t much SNMP innovation going on these

days and we should consider it a stable, mature protocol

in the Internet suite, which really doesn’t merit an area
of its own. Management issues are best left to each of

the individual areas. As a final argument, consider that

all that’s left in the NM area is the IOSL-related working

groups. If there wasn’t an NM area today, it would be

hard to argue that those working groups merit their own

area. As such, if makes sense to simply move the IOSL-
related work to the Applications area.

Standards Summary

SNMPv1 Framework

Consult the latest version of Internet Official Protocol

Standards. As of this writing, the latest version is RFC

1920.

Full Standards:

� RFC 1155 - Structure of Management Information

(SMI);

� RFC 1157 - Simple Network Management Protocol

(SNMP); and,

� RFC 1212 - Concise MIB definitions.

Proposed Standards:

� RFC 1418 - SNMP over OSI;

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 20

� RFC 1419 - SNMP over AppleTalk; and,

� RFC 1420 - SNMP over IPX.

SNMPv2 Framework

Draft Standards:

� RFC 1902 - SMI for SNMPv2;

� RFC 1903 - Textual Conventions for SNMPv2;

� RFC 1904 - Conformance Statements for SNMPv2;

� RFC 1905 - Protocol Operations for SNMPv2;

� RFC 1906 - Transport Mappings for SNMPv2;

� RFC 1907 - MIB for SNMPv2; and,

� RFC 1908 - Coexistence between SNMPv1 and

SNMPv2.

Experimental:

� RFC 1901 - Introduction to Community-based

SNMPv2;

� RFC 1909 - An Administrative Infrastructure for

SNMPv2; and,

� RFC 1910 - User-based Security Model for SNMPv2.

MIB Modules

An unofficial index of IETF MIB modules is available.

http://www.simple-times.org/pub/simple-times/html/

Full Standards:

� RFC 1213 - Management Information Base (MIB-II);

and,

� RFC 1643 - Ether-Like Interface Type (SNMPv1).

Draft Standards:

� RFC 1493 - Bridge MIB;

� RFC 1516 - IEEE 802.3 Repeater MIB;

� RFC 1559 - DECnet phase IV MIB;

� RFC 1657 - BGP version 4 MIB;

� RFC 1658 - Character Device MIB;

� RFC 1659 - RS-232 Interface Type MIB;

� RFC 1660 - Parallel Printer Interface Type MIB;

� RFC 1694 - SMDS Interface Protocol (SIP) Interface

Type MIB;

� RFC 1724 - RIP version 2 MIB;

� RFC 1742 - AppleTalk MIB;

� RFC 1748 - IEEE 802.5 Token Ring Interface Type

MIB;

� RFC 1757 - Remote Network Monitoring MIB; and,

� RFC 1850 - OSPF version 2 MIB.

Proposed Standards:

� RFC 1285 - FDDI Interface Type (SMT 6.2) MIB;

� RFC 1315 - Frame Relay DTE Interface Type MIB;

� RFC 1354 - IP Forwarding Table MIB;

� RFC 1381 - X.25 LAPB MIB;

� RFC 1382 - X.25 PLP MIB;

� RFC 1406 - DS1/E1 Interface Type MIB;

� RFC 1407 - DS3/E3 Interface Type MIB;

� RFC 1414 - Identification MIB;

� RFC 1461 - Multiprotocol Interconnect over X.25

MIB;

� RFC 1471 - PPP Link Control Protocol (LCP) MIB;

� RFC 1472 - PPP Security Protocols MIB;

� RFC 1473 - PPP IP Network Control Protocol MIB;

� RFC 1474 - PPP Bridge Network Control Protocol

MIB;

� RFC 1512 - FDDI Interface Type (SMT 7.3) MIB;

� RFC 1513 - Token Ring Extensions to RMON MIB;

� RFC 1514 - Host Resources MIB;

� RFC 1515 - IEEE 802.3 Medium Attachment Unit

(MAU) MIB;

� RFC 1525 - Source Routing Bridge MIB;

� RFC 1565 - Network Services Monitoring MIB;

� RFC 1566 - Mail Monitoring MIB;

� RFC 1567 - X.500 Directory Monitoring MIB;

� RFC 1573 - Evolution of the Interfaces Group of

MIB-II;

� RFC 1595 - SONET/SDH Interface Type MIB;

� RFC 1604 - Frame Relay Service MIB;

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 21

� RFC 1611 - DNS Server MIB;

� RFC 1612 - DNS Resolver MIB;

� RFC 1628 - Uninterruptible Power Supply MIB;

� RFC 1650 - Ether-Like Interface Type (SNMPv2);

� RFC 1666 - SNA NAU MIB;

� RFC 1695 - ATM MIB;

� RFC 1696 - Modem MIB;

� RFC 1697 - Relational Database Management Sys-

tem MIB;

� RFC 1747 - SNA DLC MIB;

� RFC 1749 - 802.5 Station Source Routing MIB; and,

� RFC 1759 - Printer MIB.

Experimental:

� RFC 1187 - Bulk table retrieval with the SNMP;

� RFC 1224 - Techniques for managing asynchronous-

ly generated alerts;

� RFC 1238 - CLNS MIB; and,

� RFC 1592 - SNMP Distributed Program Interface

(SNMP-DPI); and,

� RFC 1792 - TCP/IPX Connection MIB Specification.

Informational:

� RFC 1215 - A convention for defining traps for use

with the SNMP;

� RFC 1270 - SNMP communication services;

� RFC 1303 - A convention for describing SNMP-based
agents;

� RFC 1321 - MD5 message-digest algorithm;

� RFC 1470 - A network management tool catalog;

and,

� RFC 1503 - Automating Administration in SNMPv2

Managers.

Historic:

� RFC 1156 - Management Information Base (MIB-I)
(see RFC 1213);

� RFC 1161 - SNMP over OSI (see RFC 1418);

� RFC 1227 - SNMP MUX protocol and MIB;

� RFC 1228 - SNMP Distributed Program Interface

(SNMP-DPI) (see RFC 1592);

� RFC 1229 - Extensions to the generic-interface MIB

(see RFC 1573);

� RFC 1230 - IEEE 802.4 Token Bus Interface Type

MIB;

� RFC 1231 - IEEE 802.5 Token Ring Interface Type
MIB (see RFC 1748);

� RFC 1232 - DS1 Interface Type MIB (see RFC 1406);

� RFC 1233 - DS3 Interface Type MIB (see RFC 1407);

� RFC 1239 - Reassignment of experimental MIBs to

standard MIBs;

� RFC 1243 - AppleTalk MIB (see RFC 1742);

� RFC 1248 - OSPF version 2 MIB (see RFC 1252);

� RFC 1252 - OSPF version 2 MIB (see RFC 1850);

� RFC 1253 - OSPF version 2 MIB (see RFC 1850);

� RFC 1269 - BGP version 3 MIB (see RFC 1657);

� RFC 1271 - Remote LAN Monitoring MIB (see RFC

1757);

� RFC 1283 - SNMP over OSI (see RFC 1418);

� RFC 1284 - Ether-Like Interface Type MIB (see RFC

1398);

� RFC 1286 - Bridge MIB (see RFC 1493 and RFC

1525);

� RFC 1289 - DECnet phase IV MIB (see RFC 1559);

� RFC 1298 - SNMP over IPX (see RFC 1420);

� RFC 1304 - SMDS Interface Protocol (SIP) Interface

Type MIB (see RFC 1694);

� RFC 1316 - Character Device MIB (see RFC 1658);

� RFC 1317 - RS-232 Interface Type MIB (see RFC

1659);

� RFC 1318 - Parallel Printer Interface Type MIB (see
RFC 1660);

� RFC 1351 - SNMP Administrative Model;

� RFC 1352 - SNMP Security Protocols;

� RFC 1353 - SNMP Party MIB;

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 22

� RFC 1368 - IEEE 802.3 Repeater MIB (see RFC

1516);

� RFC 1389 - RIPv2 MIB (see RFC 1724);

� RFC 1398 - Ether-Like Interface Type MIB (see RFC

1643);

� RFC 1441 - Introduction to SNMPv2 (see RFC 1901);

� RFC 1442 - SMI for SNMPv2 (see RFC 1902);

� RFC 1443 - Textual Conventions for SNMPv2 (see

RFC 1903);

� RFC 1444 - Conformance Statements for SNMPv2

(see RFC 1904);

� RFC 1445 - Administrative Model for SNMPv2;

� RFC 1446 - Security Protocols for SNMPv2;

� RFC 1447 - Party MIB for SNMPv2;

� RFC 1448 - Protocol Operations for SNMPv2 (see
RFC 1905);

� RFC 1449 - Transport Mappings for SNMPv2 (see

RFC 1906);

� RFC 1450 - MIB for SNMPv2 (see RFC 1907);

� RFC 1451 - Manager-to-Manager MIB;

� RFC 1452 - Coexistence between SNMPv1 and

SNMPv2 (see RFC 1908);

� RFC 1596 - Frame Relay Service MIB (see RFC

1604);

� RFC 1623 - Ether-Like Interface Type MIB (see RFC

1643); and,

� RFC 1665 - SNA NAU MIB (see RFC 1666).

Subscribing to SNMP-related Working Groups

� 100VG-AnyLAN MIB Working Group

<vgmib-request@hprnd.rose.hp.com>

� Application MIB Working Group

<applmib-request@emi-summit.com>

� AToM MIB Working Group

<atommib-request@thumper.bellcore.com>

� BGP Working Group

<iwg-request@ans.net>

� Bridge MIB Working Group

<bridge-mib-request@pa.dec.com>

� Character MIB Working Group

<char-mib-request@decwrl.dec.com>

� Data Link Switching MIB Working Group

<aiw-dlsw-mib@networking.raleigh.ibm.com>

� DECnet Phase IV MIB Working Group
<phiv-mib-request@jove.pa.dec.com>

� Distributed Management

<disman-request@nexen.com>

� Entity MIB Working Group

<entmib-request@cisco.com>

� FDDI MIB Working Group

<fddi-mib-request@cs.utk.edu>

� Frame Relay Service MIB Working Group
<frftc-request@nsco.network.com>

� Host Resources MIB Working Group

<hostmib-request@andrew.cmu.edu>

� IEEE 802.3 Hub MIB Working Group

<hubmib-request@hprnd.rose.hp.com>

� IDR Working Group

<bgp@ans.edu>

� Interfaces MIB Working Group

<if-mib-request@dtl.labs.tek.com>

� IP over AppleTalk Working Group
<apple-ip-request@cayman.com>

� IPLPDN Working Group

<iplpdn-request@nri.reston.va.us>

� IPv6 MIB Working Group

<ip6mib-request@research.ftp.com>

� ISDN MIB Working Group

<isdn-mib-request@combinet.com>

� IS-IS for IP Internets Working Group
<isis-request@merit.edu>

� Mail and Directory Management Working Group

<ietf-madman-request@innosoft.com>

� Modem Management Working Group

<modemmgt-request@telebit.com>

� NOCtools Working Group

<noctools-request@merit.edu>

� OSPF IGP Working Group

<ospf-request@gated.cornell.edu>

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 23

� PPP Extensions Working Group

<ietf-ppp-request@merit.edu>

� RIP Working Group

<ietf-rip-request@xylogics.com>

� Remote Network Monitoring Working Group

<rmonmib-request@cisco.com>

� Routing over Large Clouds Working Group

<rolc-request@nexen.com>

� SNA DLC Services MIB Working Group
<snadlcmib-request@cisco.com>

� SNA NAU Services MIB Working Group

<snanaumib-request@cisco.com>

� SNMP Agent Extensibility Working Group

<agentx-request@fv.com>

� SNMPv2 Working Group

<snmpv2-request@tis.com>

� TCP Client Identity Protocol

<ident-request@nri.reston.va.us>

� DS1/DS3 MIB Working Group

<trunk-mib-request@cisco.com>

� Uninterruptible Power Supply Working Group

<ups-mib-request@cs.utk.edu>

� X.25 MIB Working Group

<x25mib-request@dg-rtp.dg.com>

Internet Resources

Automated Services

Automated services are available in the Internet, pro-

vided “as is” with no express or implied warranty. Each
service accepts a MIB module in the body of a message.

MIB module checking:

� Emissary <mib-checker@epilogue.com>

� mosy <mosy@simple-times.org>

MIB module conversion:

� convert SNMPv2 module to SNMPv1

<mib-v2tov1@simple-times.org>

� convert MIB module to HTML
<mib-2html@simple-times.org>

Source Implementations

Source implementations are available in the Internet,

provided under various no-fee licensing terms.

Agents:

� Beholder: an RMON agent for UNIX

ftp://dnpap.et.tudelft.nl/pub/btng/

� CMU SNMP: an SNMPv2u agent for UNIX

ftp://ftp.cisco.com/ftp/kzm/cmusnmp.tar.gz

� UT-snmpV2: an SNMPv2 agent for SPARCs
http://snmp.cs.utwente.nl/

� WILMA: an SNMP agent for UNIX

http://www.ldv.e-technik.tu-muenchen.de/dist/INDEX.html

Compilers:

� mosy: a MIB compiler

ftp://ftp.cisco.com/ftp/kzm/snmptcl.tar.gz

� SMIC: a MIB compiler

<dperkins@scruznet.com>

� snacc: an ASN.1 compiler
ftp://ftp.cs.ubc.ca/pub/local/src/snacc/

Platforms:

� NOCOL: a network monitoring package for UNIX

ftp://ftp.navya.com/pub/vikas/

� Scotty: a Tcl-based environment for management

applications

http://www.cs.tu-bs.de/ibr/projects/nm/

� snmptcl: a Tcl-based environment for management

applications

ftp://ftp.cisco.com/ftp/kzm/snmptcl.tar.gz

� SNMPY: a Python-based environment for manage-

ment applications

http://www.rdt.monash.edu.au/\˜{}anthony/snmpy/

� Tricklet: a Perl-based environment for management

applications
ftp://dnpap.et.tudelft.nl/pub/btng/

� WILMA: an X-based monitoring package for UNIX

http://www.ldv.e-technik.tu-muenchen.de/dist/INDEX.html

Other Resources

� IETF Home Page

http://www.ietf.cnri.reston.va.us/

� The Simple Web

http://www.cs.utwente.nl/˜schoenw/ietf-nm/

VOLUME 4, NUMBER 3 JULY, 1996

The Simple Times 24

� SNMP Testing FAQ

http://www.iwl.com/faq.html

� User-based Security Model (USEC) Resources

http://www.simple-times.org/pub/simple-times/usec/

Publications

SNMP, SNMPv2, and RMON: Practical Network

Management

� Author: William Stallings <ws@shore.net>

� Publisher: Addison-Wesley
http://www.aw.com

� ISBN: 0-201-63479-1

� Available: June, 1996

A comprehensive treatment of SNMP-based standards,

including a description of the protocols, MIBs, and
practical issues. Covers SNMPv1, the 1996 version of

SNMPv2, the original RMON1, and the current version

of RMON2.

The Simple Book: An Introduction to Networking

Management

� Author: Marshall T. Rose

<mrose.dbc@dbc.mtview.ca.us>

� Publisher: Prentice Hall

http://www.prenhall.com

� ISBN: 0-13-451659-1

� Available: April, 1996

This is the revised 2nd edition discussing both SNMPv1

and the latest information on SNMPv2. Accompanying

CD includes both agent and management application
software for UNIX.

Publication Information

Featured Columnists

Keith McCloghrie Cisco Systems

Marshall T. Rose Dover Beach Consulting

Kaj Tesink Bell Communications Research

Contact Information

E-mail st-editorial@simple-times.org
ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-

nology and comment. Technical articles are refereed to

ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed

only to the extent required to ensure commonly-accepted

publication norms.

The Simple Times also solicits terse announcements

of products and services, publications, and events. These

contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail, and

must be formatted in HTML version1.0. Each submis-

sion must include the author’s full name, title, affiliation,

postal and electronic mail addresses, telephone, and
fax numbers. Note that by initiating this process, the

submitting party agrees to place the contribution into

the public domain.

Subscriptions

The Simple Times is available in three editions: HTML,

ASCII, and PostScript. For more information, send a

message to

st-subscriptions@simple-times.org

with a Subject: line of

help

Back issues are available via either the Web or FTP, i.e.,

http://www.simple-times.org
ftp://ftp.simple-times.org

look under /pub/simple-times/issues/. In addi-

tion, The Simple Times has several hard copy distri-

bution outlets. Contact your favorite SNMP vendor and

see if they carry it.

VOLUME 4, NUMBER 3 JULY, 1996

