
CONFERENCE PROCEEDINGS

II,/~"" n~ "'X
~ fr- t7~ ~ Of1. QC
¥\1~.II..." If''',

TECHNICAL iNFORMATION CENTER

USENIX Association

Winter Conference Proceedings

January 15-17, 1986
Denver, Colorado USA

QA
ICD.~

lJl.s-
\.J ! q
,qt!i~w

i

For additional copies of these proceedings, write:

USENIX Association
P.O. Box 7

El Cerrito, CA 94530 USA

Price: $20.00

.~ Copyright 1985 by The USENIX Associa tion
All rights reserved.

This volume is published as a collective work.
Rights to individual papers remain

With the author or the author's employer.

UNIX is a trademark of AT&T Bell Laboratories.
Other trademarks are noted in t he text.

ii

ACKNOWLEDGEMENTS

Program Chairs and Committee Members

Window Environments & UNIX
Sam Leffler, Chair
Nlike Hawley, Co-Chair
Jim Gettys
James Gosling
Rob Pike

UNIX on Big Iron
Peter Capek, Chair
Jim Lipkis
Eugene NIiya

Ada and the UNIX System
Charles Wetherell, Chair
Donn Milton
Tucker Taft
Larry Yelowitz

Lucasfilm
The Droid Works
Digital Equipment Corp.
Sun Microsystems
Bell Laboratories

IB~,[Research
New York University, Courant Institute
NASA. Ames Research Center

AT&T Information Systems
Verdix Corporation
Intermetrics
Ford Aerospace

SPONSORED BY:
USENIX Association, P. O. Box 7, El Cerrito, CA 94350

TUTORIAL COORDINATOR
Michael Tilson, Human Computing Resources

USENIX CONFERENCE COORDINATOR
John Donnelly

USENIX MEETING PLANNER
Judith F. Desharnais

CONFERENCE HOST
CNIVt:RSITY OF COLORADO

Evi Nemeth, Computer Science Department

iii

Ig86 Winter USENIX Technical Conference

Window Environments and UNIX
Chair: Sam Leffler and Mike Hawley

Denver, Colorado

Wednesday, January 16, Ig86

Wednesday (8:30-10:10) Hardware and Hardware Issues

Opening Remarks
Conference Organizers and USENIX Board

Galadriel: A Display List-Based Window Manager 1
Bob Lewis, Tektronix

Next-Generation Hardware for Windowed Displays 11
S. J.\1cGeady,

Real-Time Resource Sharing for Graphics Workstatio~s 23
Mark S. Grossman and Glen E. Williams, Silicon Graphics, Inc.

Wednesday (10:30-12:00) Applications

GLO - A Tool for Developing Window-Based Programs
Thomas Neuendorffer, Carnegie-Mellon University

A Workstation-Based Inpatient Clinical System in the
Johns Hopkins Hospital

S. IV. Kahane, S. G. Tolchin, M. J. Schneider,
D. W. Richmond, P. Barta, M. K. Ardolino,
H. S. Goldberg, Johns Hopkins University Hospital

The Feel of Pi
T. A. Cargill, A T&T Bell Laboratories

34

45

62

iv

Wednesday (1:30-3:30) Systems and System Issues

Flamingo: Object-Oriented .~bstractions for User lnterface Y[anagement 72
Edward T. Smith, David B. Anderson, Carnegie-At/etlon University

A Proposal for Interwindow Communication and Translation Facilities 79
Daniel P. Gill, Exxon Research and Engineering

Problems lmplementing Window Systems in UNIX 89
James Gettys, i\1assachusetts lnst£tute of Technology

SUNDEW: A Distributed and Extensible Window System 98
James Gosling, Sun A1icrosystems

Wednesday (4:00-6:00) Panel Discussion

"Color? Do We Need It? How Can We Use It? How Do vVe Deal With It? .."

v

1986 Winter USENIX Technical Conference

UNIX on Big Iron
Chair: Peter Capek

Denver, Colorado

Thursday, January 16, 1986

Thursday (8:30-10:00) Applications and Requirements

Opening Remarks
Peter Capek, IBAf Research

User Requirements for Future-nix
Eugene A1iya, NASA Ames Research Center

Experience with Large Applications on Unix
Bob Bilyeu, McNeill-Schwindler, Inc.

UNIX Scheduling for Large Systems
Jeffery H. Straathof, Ashok K. Thareja,
and Ashok K. Agrawalal, University of Maryland

Thursday (10:30-12:00) Real Systems I

A Straightforward Implementation of a 4.2BSD on a High
Performance Multiprocessor

Dave Probert, Culler Scientific Systems Corporation

Porting UNIX to the System/370 Extended Architecture
Joseph R. Eykholt, Amdahl Corporation

Full Duplex Support for Mainframes
Don Sterk, Amdahl Corporation

104

110

111

140

157

165

vi

Thursday (1:30-3:10) Real Systems IT

Concentrix -- A Unix for the ABiant ~/[ultiprocessor

Jack Test, Alliant Computer Corporahon

A User-Tunable rv1ultiprocessor Scheduler
Herb Jacobs, Alliant Computer Corporation

High Performance Enhancements of C-l Unix
Rob Kolstad, Convex Computer Corporation

Thursday (3:30-6:30) Real Systems III

172

183

192

Considerations for rv1assively Parallel Unix Systems on the NYU 193
Ultracomputer and the IBM RP3

Jan Edler, Allan Gottlieb, Jim Lipkis,
IVew York Uniuersity - Courant Institute

Unix of CTSS for the Cray-l, Cray X-MP and Cray-2 Supercomputers 211
Karl Auerbach, ZERO-Oi'lE Systems and NASA Ames
Research Center; Robin 0 'lVeill, IVational A1agnetic
Fusion Energy Computer Center

Experience Porting System V to the Cray 2 219
Tim Hoel, Cray Research

vii

1986 Winter USENIX Technical Conference

ADA and the UNIX System
Chair: Charles Wetherell

Denver, Colorado

Friday, January 17, 1986

Friday (9:00-10:30)

Introductory Remarks

Ada and UNIX
Robert Firth, Tartan Labs

UNIX, C and Ada
Herman Fischer, At/ark V Business Systems

Friday (11:00-12:00)

225

Revision Control Tools and the Ada Program Library 241
Dick Schefstrom, TeleL OGIC AB

Managing Separate Compilation in the AT&T Ada Translator System 252
G. W. Elsesser,).\;[. s. Safran and T. Tieger, AT&T

Friday (1:30-3:00)

Targeting Ada to 68000/UNIX
Mitchell Gart, Alsys Inc.

A Comparison of UNIX and CAIS System Facilities
Helen Gill, Rebecca Bowerman, and Chuck Howell,
MITRE Corporation

SVID as an Interim Basis for CAIS
Herrnan Fischer, AJark V Business Systems

261

275

294

viii

Friday (3:30-4:30)

An Overview of the Ada Shell
L£sa Campbell and A1ark Campbell, lVCR Corporatz·on

Implementing Curses in ADA
Karl Nyberg, Verd£x Corporation

302

314

ix

1986 Winter USENIX Technical Conference

Author Index
Denver, Colorado

January 16-17, 1986

Author Page Author Page

P.Barta 45 Chuck Howell 275
Ashok Agrawalal 111 Herb Jacobs 183
David Anderson 72 S.~. Kahane 45
~·1.K. Ardolino 45 Rob Kolstad 192
Karl Auerbach 211 Bob Lewis 1
Bob Bilyeu 110 Jim Lipkis 193
Rebecca Bowerman 275 S. wlcGeady 11
Lisa Campbell 302 Eugene Miya 104
Mark Campbell 302 Thomas Neuendorffer 34
T .A. Cargill 62 Karl Nyberg 314
Jan Edler 193 Robin O'Neill 211
G.W. Elsesser 252 Dave Probert 140
Joseph Eykholt 157 D.\V. Richmond 45
Herman Fischer 225 ~LS. Safran 252
Herman Fischer 294 Dick Schefstrom 241
Nfitchell Gart 261 M.J. Schneider 45
James Gettys 89 Edward Smith 72
Helen Gill 275 Jeffery Staathof 111
Daniel Gill 79 Don Sterk 165
H.S. Goldberg 45 Jack Test 172
James Gosling 98 Ashok Thareja 111
Allan Gottlieb 193 T. Tieger 252
Mark Grossman 23 S.G. Tolchin 45
Tim Hoel 219 Glen \Villiams 23

x

1986 Winter USENIX Technical Conference

Tutorials
Denver, Colorado

January 15-17, 1986

Wednesday, January 15, 1986

1. Design Considerations for SNA Communications Under UNIX
Daniel Fisher, System Strategies, Inc.

2. UNIX Device Driver Design (4.2BSD)
Daniel Klein, Consultant

3. System V Interprocess Communication Application Programming
Dr. Jon fl. LaBadie, A U.XGO

4. ADA - From the Top: An Introduction
Putnam P. Texel, Texel 8 Company

5. UNIX System V Internals
Maury Bach and Steve Buroff, A T8T Informl(Ltion Systems

Thursday, January 16, 1986

6. Introduction to 4.2BSD Internals
Dr. Thomas ~v. Doeppner, Jr., Bro wn University

7. vVindowing Systems Implementations
David Rosenthal, Sun }Vficrosystems, Inc.

8. Language Construction Tools on the UNIX System
Stephen C. Johnson, A T&T Bell Laboratories

9. Advanced C Programming
William C. Steward, A UXCO

xi

Friday, January 17, 1986

10. A.dvanced Topics on 4.3BSD Internals
Mike Karels and A1arshal Kirk A1cKusick, University of Cahfornia, Berkeley

11. UNIX Networking
Bruce Borden, Silicon Graphics, Inc.

12. ;\,Ianaging a Local Area Network
Evi Nemeth and Andy Rudolf, University of Colorado, Boulder

13. Introduction to UNIX System Administration
Ed Gould, mt Xinu

14. Writing Portable C Programs
Dr. Tom Plum, Plum Hall, Inc.

Window Environments and UNIX

January 15, 1986

Denver, Colorado

Galadriel: A Display List-Based Window Manager

Bob Lewis

Graphics Workstation Division
Information Display Group
P.O. Box 1000, MS 61-277

Tektronix, Inc.
Wilsonville, OR 97070

tektronix!tekecs!bobl

ABSTRACT

This paper presents an architectural description of Galadriel, a window
management system that provides both text and graphics services to client
processes. Unlike most other window managers, Galadriel runs under UNIXt on a
hosted, display list terminal instead of a bitmapped workstation. It discusses the
advantages and disadvantages of this approach as well as areas for further develop
ment.

1. Introduction

Window managers are gaining increasing acceptance as a part of many engineering environments.
Usually, however, they use a display connected directly to a single-user workstation over a high
bandwidth communications line such as a memory bus.

This paper discusses a window manager called Galadriel 1 which shares many characteristics with
previous window managers, but runs on a substantially different hardware configuration.

Galadriel runs under the UNIX operating system residing on a host computer and interfaces to
several different terminal models over an RS-232 communications line. All of the models supported
are display list-based; in additional to conventional ASCII text (alphatext) , output to them may
include encoded graphics primitives such as polylines, polymarkers, filled polygons, and graphic text
(graphtext) which can be sent directly to the display processor or put in terminal RAM as a seg
ment. The host can then change various attributes of the segment, redisplay it, and replicate it
without retransmitting the primitives.

Section 2 describes the target hardware and software constraints. Subsequent sections deal with the
effects of these constraints on traditional window management capabilities. Section 3 covers the
ways Galadriel organizes windows and related objects from the application's and the user's points of
view. Section 4 briefly discusses the interfaces to these objects that Galadriel presents. Section 5
goes into more detail on the internal operation of the window manager process itself. Finally, Sec
tion 6 discusses possible directions for future development.

t UNIX is a trademark of AT&T Bell Laboratories.
I. From J. R. R. Tolkien's Lord of the Rings, owner of magic mirror is about as close as we could come to a
mythological window manager.

- 2 -

2. Hardware and Software Constraints

Galadriel was originally implemented on a Tektronix 4115 B terminal connected over an RS-232 line
to a VAXt (780) running an internal Tek version of (relativelr standard) 4.2bsd UNIX. So far.
it's been ported to a different 4.2bsd variant (Tektronix's UTek *), two other host compute engines
(Tek 6030 and 6130), and four other terminals (Tek 4111, 4125, 4128, and 4129).

2.1. Hardware Characteristics

Table 1 gives the relevant differences between the various terminals that affected system design.

model(s) 4111 4115B, 4125,4128, 4129J

display size (pixels) 1024 x 768 1280 x 1024
character size (pixels) 8 x 16 8 x 16 or 16 x 30
#rows x #columns 48xl324 64 x 160 or 34 x 80
number of bit planes 4 52 ,4,6, or 8
display list RAM 1.2MB 768KB

Table 1 -- Display Characteristics

All terminals6 accept the same set of over 200 commands. Other design-relevant features common
to all of the terminals are:

• 64 viewports (i.e., clipping rectangles)

• 64 dialog areas (independent alphatext output areas, each emulating most of a VT100t)

• signed 32-bit integer display list coordinate space

• raster operations between screen, display list RAM, and host

• a 24-bit color map, indexed by the value of each pixel

• baud rates of up to 19.2 kbaud

• the ability to make any segment the cursor

• mouse or puck/tablet

2.2. Software Considerations

By far the most serious constraints on the design and implementation of Galadriel arose from two
factors that set it apart from most other window managers now available. The first is that commun
ication between the host and the terminal must take place over a serial RS-232 line. The second is
that Galadriel's modus operandi must be acceptable on a host shared with several other users.

The RS-232 communications bottleneck means that the design must use whatever resources it can
on both host and terminal ends to minimize the number of bytes that need to be transferred to get
things done. Having a display list with definable segments is a big help with this, because once
graphic primitives are put into a segment, that segment can be transformed and redisplayed as a
unit - the primitives never have to be sent again.

The shared host requirement limits the desirability of tight interaction loops. For such a loop, the
nature of the interface would require the window manager to poll the terminal continually for the
cursor position. At 9600 baud, the transit time for the 20 or so characters involved in the poll is <

t VAX and VT100 are trademarks of Digital Equipment Corporation.
2. The only change needed in the source code was caused by UTek's allowing 64 open file descriptors (cf. 4.3bsd)
instead of the usual 20.
*UTek is a trademark of Tektronix, Inc.
3. The 4125 is an upgrade of the 41158. The 4128 and 4129 include three-dimensional capabilities that Galadriel
does not currently use.
4. Galadriel only uses the 128 columns that have pixels under them.
5. The 41158 has a minimum of 4 bit planes.
6. We'll use the somewhat inexact term 412x hereafter to refer generically to all of the terminals in Table I.

- 3 -

0.02 second, so the communications bottleneck is not the culprit here. The problem is that the win
dow manager would be almost constantly writing to and reading from the terminal. Because input
from both of them goes in though the tty driver, the operating system has no way to distinguish
responses to polling from (asynchronous) user input. The window manager would look like a highly
interactive process, even though there might be no input from the user taking place. The effect is
that a process in a polling loop hogs as much system time as several conventional interactive
processes. Galadriel should therefore avoid polling as much as possible.

The window manager process windman was designed to run as a normal user process and require no
modifications to the 4.2bsd kernel. It has met these goals, although some speedups in the pseudo-tty
driver have improved performance.

Existing programs should work without recompilation. This included not only glass tty programs
like Is(1) and ed(I), but screen-oriented ones like v;(l), emacs(I), and programs using cursesOt) 7.

2.3. System Performance Goals

Galadriel was designed to support CAD systems. Its original clients included VLSI layout and
schematic capture editors. As usual for such systems, performance is a critical requirement.

Galadriel maximizes performance by several strategies:

• Minimize the number of bytes sent to the terminal.

• Reduce the number of times scalars are encoded for transmission (most of the time, they are
now encoded only once).

• Reduce the number of byte copies.

• Use 412x features (e.g., macros) to speed things up.

• Use efficient programming techniques (loop unrolling, etc'> in critical areas.

Benchmarks of the layout editor (Tek's Leia) on a Tek 6130, comparing a version running under
Galadriel with one that outputs directly to the terminal using a compatibility library, show less than
5% overhead (clock time) of the window managed over the non-window managed version.

3. Window Organization

The window manager process exists as a separate process servicing requests from you, sitting at the
terminal, and one or more client processes (see Figure I).

3.1. Windows and Window Ttys

Each of these clients owns one window tty (wintty) and one or more possibly overlapping, rectangu
lar windows. Each window has a title bar, which displays the name of its wintty, which is of the
form Idev/tty??

Internally, each wintty is implemented as a pseudo-tty (pty(4», so its name is that of the slave end
of the pseudo-tty whose master end Galadriel is watching.

3.2. Panes

Clients may subdivide windows into panes, rectangular areas contained within windows which
display output. Most of a window's area is devoted to panes. Each window starts out with a single
pane, called its primary pane.

The terminal hardware has no notion of windows or panes. The software treats windows as groups
of panes that get created, deleted, reframed, etc. together, associated with a title bar. It then maps
each pane to a list of virtual viewports.

This list may have no members, one member, or several members depending on whether the pane is
completely obscured or collapsed, completely unobscured, or partially obscured, respectively.

7. Including, of course, rogue(6).

application 1
(windowing)

application 2
(windowing)

application 3
(emulating)

- 4 -

windman
library

UNIX 110
!E----=-'t

library

windman
library

UNIX 110
IE----:.I

library

UNIX I/O
!E----=-'t

library

windman

mouse

Figure 1 -- The Window Manager Process

Actions affecting this pane, such as making a new segment visible in it, require a traversal of the
list.

Galadriel maps the 64 most recently used virtual viewports to the 64 viewports that the 412x sup
ports in hardware, so the window manager must maintain a relation between panes and segments to
be able to actualize any virtual viewport at any time. For bookkeeping and memory reasons, how
ever, each application is arbitrarily limited to 128 panes.

The management of viewports is the counterpart to the management of on-display and off-display
bitmaps that the Blit (see [Pike84]) performs.

3.3. The Client Models

The window manager looks at clients in one of two ways; emulating or windowing, depending on the
functionality the client requires.

3.3.1. Emulating Clients

Galadriel supports terminal emulation for conventional UNIX programs such as mai/(I) , vi(l),
Is(I), etc. Emulating clients do not require recompilation to run under the window manager. Gala
driel treats new clients as emulating by default.

By using pseudo-ttys along with the 412x's dialog areas, each emulating client gets its own VT100
like screen. Pty(4) lets clients believe that they're talking to a tty (4) -like device. Hardware support
allows fast scrolling of even partially obscured windows and an emulating client never has to regen
erate a window as a result of a window manager command (e.g. Move).

3.3.2. Windowing Clients

As Figure 1 shows, windowing clients are compiled with an additional library of window manage..
ment functions. Section 4.2 will discuss these.

Only windowing clients can own more than one window or more than one pane. They can specify
that one or more of those panes emulate a VT100 as above. They then select one of them to be the

- 5 -

text pane.

Most windowing clients, however, are more concerned with fraphics output. Galadriel does not use
pseudo-ttys for this, but sockets. This allows greater speed and reduces the need for Galadriel to
demultiplex emulated text from window manager commands.

The graphics that windowing clients can perform is modeled after the Graphical Kernel System
(GKS). Unlike text output, this allows for simultaneous graphics output to multiple panes.

3.4. The Active Process

In the case of mouse9 input, the cursor presence in a particular window implies that the recipient of
the input should be that window's owning process, but keyboard and function key input has no such
implied destination. Galadriel therefore designates one process as active and takes it to be the
current focus of the user's attention. The active process gets keyboard and function key input.

There are also certain terminal-wide resources that can have only one controlling process. These
include:

• rubberbanding

• the current color maplO

• the cursor segment

It's convenient to let the active process also take charge of these, so that whenever a process is
activated, Galadriel takes care of restoring these resources.

4. Window Manager Interface Implementation

Galadriel provides most of the features commonly found in window managers. This section will con
centrate on how it does so within its design constraints. The window manager has three interfaces:
user, shell, and programmer. The shell interface, however, doesn't use anything that the user and
programmer interfaces don't use as well, so it won't be discussed here.

4.1. User Interface

4.1.1. Mouse Input and the Cursor

The 412x provides the ability to define a particular segment to be the cursor, tracking mouse move
ment without host intervention <i.e., polling). Whenever the user presses a mouse button, the termi
nal sends a GIN (graphic input> report to the host. It is up to Galadriel to decide what to do with
the report, depending on what the cursor was pointing at as well as its own internal state.

4.1.2. Pop-Up Menus

One of the buttons on the mouse is designated the window manager button. Pressing it brings up
the system pop-up menu. With it, you can perform all of the basic window manager commands:
Activate, Bury, Collapse, Create, Delete, Expand, Move, Reframe, and Uncover. Reframe is the only
command that requires polling, since the 412x doesn't have a rubber box cursor to show the new
frame of the window.

All of these commands are postfix or object-verb. This means that you first point at the window
you want to act on, request the system pop-up menu, choose a command, and the window manager
acts ll .

8. On a 6130, for large (4K byte) block sizes, pseudo-tty's are typically a factor of 10 slower than sockets. which
makes the latter preferable for large segment definitions.
9. Galadriel works with either a mouse or a puckltablet. We'll use mouse hereafter to refer to both.
10. Galadriel gives each process control of all 2# or planes colors, although restraint is recommended.
II. One exception to this: because it's so final, the Delete command requires you to confirm the window you want
to delete.

- 6 -

Of course, application programs can define pop-up menus as well.

Pop-up menus must appear and disappear quickly. They could be implemented as titleless windows,
i.e., viewports, but this causes problems when you pop-up a menu over a window containing many
segments. Even though the window would be refreshed at the rate of tens of thousands of vectors
per second, a few seconds is an unacceptable time for a menu to go away.

An alternative is to use the 412x pixel save and restore commands. These copy an area of the
screen to and from display list RAM. Galadriel saves what's underneath a menu until the selection
is made and then restores it before further output takes place. There are two drawbacks here:

• There can be no output to the terminal while the menu is up, since, unlike the Blit [Pike84],
no output can go to the saved rectangle.

• The size of the menu is restricted, since there are 1.2MB of frame buffer and available display
list RAM is usually much smaller than that.

The first drawback turns out to not be particularly annoying, and Galadriel satisfies the second by
limiting the use of this technique to pop-up menus no larger than 32 characters wide by 16 charac
ters high. It treats any pop-up larger than that with the previous window creation approach.

4.1.3. Scroll Bars

Clients can specify that any or all of their panes have scroll bars associated with them. Scroll bars
on a pane allow a consistent and convenient way to browse its design space, assuming that that
design space is larger than you can see all at once. Depending on the application, you can pan and
zoom both horizontally and vertically12. There is also an overview button which toggles a view of
the entire design space with the previous view.

Galadriel performs pans and zooms by sending a short sequence of commands to the terminal to
change the pane's viewport transformation(s) and redraw the viewport(s). It does not need to
resend primitives contained in segments. Unless the application has requested notification (see Sec
tion 4.2.2), it won't know that the pan or zoom has taken place.

Unlike those of other window managers (cf. Smalltalk-80t lGoidberg84D Galadriel scroll bars are
static. This means that a pane is created (optionally) with scroll bars and the bars stay with the
pane until it is deleted. This has the disadvantage that the scroll bars, if present, always take up
screen area, but this is outweighed by the advantage gained by not requiring the host to poll for cur
sor presence.

4.2. The Programmer Interface

This interface allows applications to control windows and output to them, as well as receive input
from you. It has three layers: UNIX I/O, window (WL), and graphics (GL). Within this inter
face, a program can only control the windows and panes that it owns, but it has a greater measure
of control over those.

4.2.1. UNIX I/O Layer

This is the only layer available to emulating clients. As we've said before, output is directed to
panes. A pane is created with an attribute that says whether or not it can contain alphatext, Le.,
whether or not it needs to be able to emulate a VT100. The reason for this is to conserve the 412x's
64 dialog areas. Each pane that can contain alphatext takes up one dialog area, and, unlike
viewports, dialog areas cannot be virtualized.

To an application, such a text pane appears as a virtual terminal. The most commonly used ANSI
X3.64 commands work in it, and under UNIX it has a TERMCAP entry describing these com
manes. Additionally, for emulating clients the TERMCAP includes the proper window dimen
sions!3.

12. Zooming maintains aspect ratio, so a vertical zoom also causes a horizontal zoom, and vice versa.
Smalltalk-80 is a trademark of Xerox Corporation.
13. This also applies to windowing clients that don't split their primary panes.

- 7 -

The Reframe command causes problems, though. Although the window manager sets the
TERMCAP environment variable to a temporary file containing an up-to-date termcap(S)-like
description, there is no standard way to inform screen editors and the like that this has happened
while they're running l4.

Input is slightly more complicated. Following GKS, GL considers keyboard input to be part of
graphic input (GIN). There are two keyboard input models corresponding to emulating and win
dowing clients. Emulating clients have a control tty Udev/tty) that behaves like a normal tty.
They can call ioct/(2) to control echoing, interrupt characters, line editing, and other tty(4)
features.

Windowing clients get all of their input from the GL GIN routines, and any attempt to read from
their control ttys will block because GIN doesn't travel that waylS.

4.2.2. The Window Layer

There are 24 functions in this layer. WL duplicates much of the functionality of the user and shell
interfaces for the programmer. In addition, the programmer has greater control over panes, includ
ing the ability to create and delete individual panes. The application can create non-primary (see
above) panes by splitting existing panes.

A significant departure here from most window managers is the association of two boolean flags
with each of several window manager and user actions. One flag is for permission and the other is
for notification. The permission flag allows the associated action to be carried out on the entity to
which it is bound. If the notification flag is set, after the action is performed (or attempted, if the
permission flag is not set), the owning process learns about it in the form of a detailed GIN report.

Permission/notification flags are bound to both windows and panes. For windows, they control the
actions the user attempts from the system pop-up menu. For panes, they determine the presence
and function of scroll bars.

4.2.3. The Graphics Layer

GL is a set of 102 graphics routines. Although not entirely GKS-compatible (usually for perfor
mance reasons), about 90% of these routines map into a Level 2b GKS implementation with
enhancements.

s. The windman Process Architecture

Figure 3 shows the flow of data within windman, the window manager process.

Basically, windman is a command-driven finite state machine. Every command, including ANSI
text output and escape codes, WL and GL requests, keystrokes, and mouse button presses, are
awaited by a single select(2) call in the queue manager. Once a command is received, the queue
manager decides which of the four parsers; ANSI, GL, WL, or GIN; to pass the command to.
Apart from saving and restoring some context information, the queue manager is the only part of
the windman process that knows (or cares) that there may be multiple clients.

The ANSI parser is a finite state machine itself. All pseudo-tty output from applications goes
through this parser. It sees that only complete ANSI commands get sent to the terminal and
prevents certain other sequences (such as RESET TERMINAL and non-ANSI commands) from
getting there.

The GL parser is responsible for maintaining client context, so that each client can have the attri
butes it sets present while it's writing primitives and defining segments. This parser also queues seg
ment definitions until the client closes the segment. Both of these features are necessary because
the terminal permits only one set of attributes and one open segment, at most, at a time. It also
manages terminal memory and sends responses to clients when needed.

14. The SIGWINCH and lIy(4) enhancements made to 4.3bsd will be helpful here.
IS. A way to permit clients to do this is under consideration.

- 8 -

clients

keyboard

mouse

ANSI
parser

window
controller

stdio(J) terminal

Figure 3 -- Dataflow Within windman

The WL parser deals with the higher-level commands that make up WL and the shell interface as
well. Most of the time, about all it does is decode the arguments and pass them on to the window
controller, which does the real work.

Both WL and GL parsers converse with the window manager library in each application over sock
ets using a syntax that resembles a remote procedure call, but is buffered and otherwise optimized
for Galadriel.

The main purpose of the GIN parser is to see who gets keyboard and mouse input. Under most cir
cumstances, Galadriel permits GINahead - you can perform mouse or keyboard input before it is
requested 16.

The GIN state machine handles what tight interaction loops Galadriel provides: rubberbanding, rub
berboxing, and window moving. It also exerts some control over the queue manager. It can restrict
the select(2) call to watch only the terminal when, for example, the user is making a selection from
a pop-up menu.

The responder is called whenever it's necessary to send a GIN report or a command return to a
client. The latter corresponds to the return mechanism from a remote procedure call, except that no
ANSI and very few GL commands require a return.

All graphics output takes place through stdio(J) via a package of primitives which is the only part
of Galadriel that knows 412x escape codes.

16. Implementing this is not as easy as it sounds.

- 9 -

6. Future Developments

6.1. Faster Communications

As discussed in Section 2, the major bottleneck is the RS-232 communications line. Obvious possi
bilities are such things as Ethernett or DMA communications between the host and the terminal.
In fact, there already is a Unibus:l: interface card for the 412x, and the Galadriel project is looking
at the capabilities it offers very closely.

As the communication speed increases, the distinction between host./terminal and workstation blurs.
The terminal becomes more like a workstation with an independent display engine and a shared
compute engine (the host).

6.2. Increased Hardware Support

The 412x was not originally designed for window management. Galadriel has indicated some likely
functions to migrate from software to firmware and hardware. These include:

• the pane - virtual viewport - hardware viewport mapping

• output simultaneously to several panes

• better support for tight interaction loops

• context settings

• retain non-segment output during moves and occultations

6.3. Improved Pseudo-Tty Support

Under 4.2bsd, the number of pseudo-ttys is fixed in the kernel and must be created by
/dev/MAKEDEV. This is rather artificial. It would be preferable to invoke open(2) on /dev/pty
or whatever and have that create a new pseudo-tty automatically. An ioct[(2) call would return the
actual names of the pair. The device should go away whenever the opener of the master end closed
it, treating it as a hangup (Le., SIGHUP) on the slave end.

Alternatively, Ritchie's streams (see [Ritchie84]) would also provide a better way to implement
pseudo-ttys.

6.4. Bitmaps

Although the 412x has several commands to copy between host, screen, and display list RAM, they
are neither orthogonal nor functionally complete. These should be cleaned up, since as communica
tions become improved, it will be feasible to treat the 412x as both a bitmapped and display list dev
ice, and let the clients choose accordingly.

6.5. Distributed Windows

Any emulating client can run r!ogin(I), so this feature is already partially present. For windowing
clients, intermachine sockets and a naming server (to get the name of the local windman's socket to
the remote client and vice versa) are needed.

6.6. More Segment Memory

Large applications can use up the 3/4 megabyte or so of display list RAM in the 412x with relative
ease. Two ways to alleviate this are (I) more display list RAM (obviously) and (2) virtual storage
in the terminal. If there were greater bandwidth between the terminal and the host, it might be
feasible for the terminal to use the host's virtual memory.

t Ethernet is a trademark of Xerox Corporation.
*Unibus is a trademark of Digital Equipment Corporation.

- 10 -

Acknowledgements

Paula Mossaides is Galadriel's project manager. In addition to the author, designers, implementers,
and maintainers are/were: Scott Hennes, Donna Nakano, Karen Palmer, Rob Reed, and Bob Toole.
Evaluators were: Keith Koplitz, Larry Jones, and Max Miller.

References

[Goldberg841

[Pike841

[Ritchie84]

Goldberg, A., Smalltalk-80 The Interactive Programming Environment, Read
ing, MA: Addison-Wesley, 1984.

Pike, R., The Blit: A Multiplexed Graphics Terminal, AT&T Bell Lab. Tech. J.,
63, No.8 (October, 1984).

Ritchie, D. M., A Stream Input-Output System, AT&T Bell Lab. Tech. J., 63,
No.8 (October, 1984).

Next-Generation Hardware for Windowed Displays

S. McGeady

Intel Corporation
Hillsboro, Oregon

ABSTRACT

Hardware support for windowing on bitmapped displays has historically been
minimal. Indeed, there is a widely-held belief that window management is an
aspect of graphical image generation, to be treated with the same tools. This belief
has been encouraged by the wide use of the bitblt operator in bitmapped systems
for both image generation and windowing. A reliance on the use of bitblt for win
dowing has hindered the development of windowed color displays, and the perfor
mance problems involved in moving large amounts of data have made real-time
scrolling and panning an impossibility in bitblt-based systems.

The creation of a distinction between imaging, the drawing of images in bit
maps, and windowing, the tiling of those images onto displays, makes it easier to
think clearly about how to apply hardware to both aspects of display systems.

This paper presents descriptions of three existing systems to demonstrate how
hardware can be applied to enhance windowing performance: one is a combined
hardware/software approach using traditional hardware; another is a hardware sys
tem for windowing on a character-mapped terminal; and the third is a fully
hardware-windowed bitmap display.

1. Introduction

Much effort has been expended in recent years in the application of new hardware to enhance
the performance and flexibility of graphics display devices, especially hitmapped displays
[1,2,3,4.51 Numerous hardware innovations have recently become available that greatly increase
the capability, performance, and flexibility of these displays. During the same period the idea of
dividing a display's viewable area into independent, overlapping rectangular regions, or windows, has
become popular. Despite the growing popularity of windowed displays, very little effort has been
directed toward hardware for enhancing windowing capabilities and performance. The effort to
move window environments from existing monochrome, medium-resolution displays to high
resolution multi-planed color displays will make necessary the development of new types of hardware
designed specifically and solely to support windowing.

The rapidly falling cost of bitmap display hardware is bringing windowed-display development
efforts onto an equal footing with graphics image-generation work, yet windowing is still approached
with traditional graphics tools that are poorly suited to window management. This paper shows that
the problem of window management becomes much simpler when it is separated from graphics
image-generation. This separation allows the application of very powerful, but not overly expensive,
hardware to improve windowing performance and simplify window management software while los
ing none of the flexibility of current schemes.

- 12 -

2. Imaging versus Windowing

To fully understand the essence of windowing, one must carefully and clearly distinguish it
from imaging. Imaging, used in this context, is the broadest possible term for drawing pictures, and
comprises every manner of line-drawing, area-filling, surface rendering, and other rasterizations.
Imaging systems tend to deal internally in coordinate systems of their own choosing, producing bit
maps in the resolution of the display device only at their final stage. A traditional model of graph
ics is useful here: an imaging system expects to produce a picture, or series of pictures, on a single
display device, for the user to view and interact with. The application driving the imaging system
does not want to deal with clipping boundaries which are not part of its abstraction, with the possi
bility that the color map may be changed from underneath it, or with the idea that it may be called
upon to redraw some random section of the display which it has already drawn, and it seldom wants
to directly consider transformations into device coordinate space. This view is justified in more
detail in [6] and [7].

On windowing bitmapped systems, the imaging system can be considered to be writing in a
virtual frame-buffer for which it alone is responsible. An application must be presented (barring
active intervention on its part) with the illusion that it is the only application using this virtual
display, in much the same way that the program itself is presented by the underlying operating sys
tem with the illusion that it alone is running on the processor. The window manager is responsible
for supporting this illusion on a display system, in the same way that the operating system supports
the virtual machine on a timesharing system [7].

Windowing, distinguished from imaging, is the process of layering or tiling these virtual
frame-buffers into a physical frame-buffer or onto a physical display. Windowing systems need not
and should not deal with the content of these virtual frame-buffers, only with their presentation on
the screen.

This segregation of imaging and windowing functions has benefits for both areas: the window
ing software (and hardware) support is concentrated in a single, shared unit consisting of the win
dow management process and any supporting hardware; and the imaging systems are simpler,
because they needn't worry about redrawing themselves at random times, or about clipping to win
dow boundaries, and because existing, non-window-cognizant applications run without modification.

3. The Failure of Existing Imaging Hardware

New developments in graphics image-generation hardware are coming at such a fast pace that
it is becoming difficult to keep up with them. A comprehensive list of imaging hardware would be
far too lengthy to include, but a few of the more significant developments are:

• Jim Clark's Geometry Engine [8], a multi-chip processor allowing extremely fast three
dimensional transformations, clipping, and scaling;

• the NEC 7220 [9] graphics controller chip and other manufacturer's equivalents, popular
because of hardware implementation of moderately fast line-drawing primitives;

• several hardware bitblt implementations: Silicon Compilers' chip for Sun Microsystems, Inc.;
Apollo's proprietary bitmover; Texas Instruments" Motorola's, and National Semiconductor's,
about-to-be-announced mass-market bitblt chips; and others; and

• very-high-performance rendering engines, typified by the Lucasfilm Pixar processor [10].

Several of the low-cost all-in-one CRT controllers make attempts at providing windowing,
often allowing horizontal or vertical split screens, or a small number <typically one) of non
overlapped hardware windows. In all cases there are restrictions of such severity that this special
hardware is useful only in special-purpose windowing environments.

Manufacturers with high-speed vector- and polygon-drawing engines, such as Tektronix and
Silicon Graphics [Ill, tend to take the view that windowing can be accomplished by redrawing the
entire screen from a stored display list when window changes are made, using the clipping and
transform capabilities of the vector-oriented hardware. These techniques can be made quite effec
tive, although the high-speed drawing engines are often too expensive for those who want windowing

- 13 -

and bitmapped graphics without sophisticated and expensive imaging systems. Furthermore, it is
clear that window management is an inefficient and inappropriate use of such hardware.

Manufacturers of color displays who do not use the display-list redraw technique have particu
lar problems with windowing, due to the extremely high overhead involved in bitblt when more than
one image plane is involved. Moving bitmaps on one plane at a time produces unpleasant color
effects if the transfer cannot occur entirely during the Vertical Retrace Interval of the monitor, an
uncomfortably short period of time. In all color systems, extreme havoc will ensue if an application
running in one window changes the display's color map. Since the color map controls the entire
display, an application running in a window cannot change it without affecting all the windows on
the screen.

4. Windowing Hardware and the Tyranny of Bitblt

Although bitblt chips have occasionally been used to good advantage in windowing systems,
and some hardware exists that provides limited split-screen features, little hardware has been
applied to windowing. Because the bitblt operator has been seen as the primary, if not the only
implementation vehicle for windowing systems, most attention by both software and hardware
developers has been toward speeding it up by the use of sophisticated and highly-tuned algorithms,
or with specially-constructed memory arrays which reduce processor/display memory access colli
sions.

Bitblt's usefulness as the basic implementation tool for windowing is limited because it is ulti
mately the wrong approach. The historical use of bitblt for windowing is closely tied to the mono
chrome bitmapped display hardware on which windowing was first developed [2]. First used for
painting small images in this frame-buffer memory, bitblt came to be used as the basis for the
notion of windows, and has been used that way for over 10 years. Today the whole idea of copying
blocks of data to arrange regions on the screen is as artificial as the ornate program-overlay systems
developed in the absence of virtual-memory hardware on the processors of the 1960's.

There are performance problems with bitblt which can never be completely resolved, since fun
damental window operations involve the transfer of such large amounts of data. Performance is a
moderate problem in monochrome systems, and an extremely severe problem in multi-plane color
systems. More importantly, the ALU operations of bUblt such as' XOR have no clear correlate in
color systems, where one wants more complex operations like over and under [12], and textures,
used to good advantage in monochrome systems, don't work on color systems, where one wants shad
ing. oitblt forces programs to work in device coordinates in a world that is rapidly moving to
device-independent coordinates. Windows and per-device color maps are ill-suited to one another,
not providing the abstraction desired by the application.

Few have thought to look beyond bitblt at the deeper needs of a windowing system. The prob
lem of windowing is not one of image generation, it is one of memory management, particularly
memory mapping and access multiplexing. Once we throwaway the idea that image-drawing tech
nology has anything other than historical and incidental use in windowing, it becomes much easier
to apply new ideas to the problem.

5. Advantages of Hardware Windowing

Hardware windowing has many advantages over software approaches, either display-list or
bitblt oriented. The advantages spring partly from the purer embodiment of windowing that is
enforced by the hardware, and partly from the hardware itself.

• Applicability to Color - the hardware windowing makes moderate-cost windowed color
displays possible: per-window color maps eliminate a major problem area with existing win
dowing color displays; Window management software written for hardware-windowed mono
chrome systems is portable to color systems; and Color bitmaps (multi-plane or multi-valued
pixel frame buffers) can be operated on without color swim.

• Scrolling and Panning - hardware windowing allows fast and simple vertical scrolling and

- 14 -

horizontal panning of bitmap images which are represented in a frame buffer without moving
large amounts of data, and this in turn frees the imaging hardware to fill the newly revealed
area, if it does not already reside in the frame buffer.

• Simplification of Graphics Applications - hardware windowing simplifies user-level graphics
applications by: freeing applications from the need to unnecessarily redraw or clip their output,
and thus of the need to maintain a display list; by allowing porting and development of non
window-cognizant applications; and by freeing applications from the need to use device
dependent coordinates.

• Simplicity of Window l\lanagement Software - Window Managers no longer need to multi
plex access to the frame-buffer, or have any knowledge of the content of the frame buffer, and
are generally smaller and simpler.

• Speed - in addition to scrolling speed, creation, deletion, and movement of windows is much
faster than in a bitblt system, since no data copies are required.

The only disadvantage of hardware windowing is its current cost. In the absence of inexpen
sive VLSI solutions, windowing hardware is too expensive for low- and moderate-cost systems. The
need for a frame buffer that is substantially larger than the total display area is a disadvantage,
although as memory prices continue to fall this will become less of an issue. While a 4k-by-4k bit
frame buffer plane costs $64 today, this is expected to drop to $16 or less in the next few years.
Processing power will continue to cost a great deal more than memory, and hardware windowing
substantially reduces demands on display processors for windowing.

6. Example Systems

In order to illustrate some of the ideas discussed above, and as an existence proof for window
ing hardware, I am going to briefly discuss four hardware windowing systems, three bitmapped
displays, and an alphanumeric display. Only the two alphanumeric displays are currently available
or likely to become available in the near future.

6.1. Bitmap Displays - Background

Some numbers will be needed in our discussion to relate these ideas to reality, and will be
presented here for future reference. A typical medium resolution <I024x768} monochrome display,
running at 60Hz refresh (non-interlaced), paints a new screen every 16 milliseconds, paints an indi
vidual line every 15 microseconds, and thus paints a pixel every 10-20 nanoseconds. There is a 4-8
microsecond horizontal interval between each scan line, and a 200-600 microsecond vertical interval
between each frame. A typical bitmap system is represented in Fig. I.
In such a system, the sequencer, a simple address generator produces a stream of addresses that
sweep across the frame buffer, successively transferring each word to a shift register that outputs
one pixel at a time. Hardware window systems simply replace this trivial address sequencer with a
more complex, table-driven address generator.

The window controller can be conveniently thought of as a memory management unit for the
frame buffer. The window controller must translate between screen addresses, represented by a
combination of vertical (scan line) and horizontal (per-line beam position) components, and frame
buffer addresses, which consist of word-offset and pixel-offset components.

6.2. The Tektronix 6200 Display

The first example is a display system designed at Tektronix, Inc. as part of the Engineering
Computer Systems (ECS)· Division workstation project. The hardware for this system was designed
in 1983, and built in 1984 and 1985. The software architecture described here (and in more detail
in [7]) was designed in 1983. A slightly different version of the architecture, implementing the vir
tual frame-buffer concept at a higher hardware level, was implemented in 1984 and 1985.

• Now Graphics Workstation Division (GWD).

- 15 -

addr- Display data (32 bits)• t
- Memory
-data

Shift Register I
I

I 'I'
addr

Dot Clock

• processor addressing Address
Horiz Sync

t video addressing Sequencer
Vertical Sync

Video
Output

Fig. 1 - Typical Bitmap Hardware

----------------,----
The hardware consists of two processors: the Display Processor (DPU), a general-purpose pro

cessor which runs processes implementing the imaging and user interaction for each window, and the
overall control and communication code for the display system; and a microprogrammed bit-slice
processor <the MicroEngine) which is responsible for low-level windowing operations and graphics
primitives. While the hardware for this system was powerful, it does not directly support windowing
operations. This paper, however, takes the view that the MicroEngine and its microcode together
comprise a hardware system.

The MicroEngine hardware is similar to analogous drawing processors in other Tektronix ter
minals, but is used in a much different way. Most terminals use these engines to traverse display
lists of graphics primitives (line-draws and area-fills of sundry types, some transformations, and
character drawing), to generate an image in the frame-buffer. The architecture sought to provide in
addition a transparent virtual frame-buffer abstraction to processes running in the Display Proces
sor (and by extension, to applications running on the host) by implementing a set of graphics primi
tives which understood the window structure of the display, and which automatically transformed
and clipped their output to the appropriate window, while writing concealed parts of the image into
non-frame-buffer memory. Thus, portions of the virtual frame.;.buffer which are not represented in
the physical frame-buffer are cached in main memory. This implementation was formalized in [6]
which presents the layerop concepts, specifically the idea of an automatically clipped bitblt, and the
restartable DDA line algorithm. The MicroEngine is effectively a hardware layerop processor,
automatically clipping images into on-screen and off-screen sections. The principal data structures
of the 6200 are shown in Fig. 2.

A Window Manager process in the Display Processor maintains the Window Descriptions data
structure representing the locations and extents of each window, the location Gn physical Display
Processor memory) of the display list (if any) associated with each window, and the locations (also
in physical DPU memory) of any pieces of the window that are cached in the Layer Pool. The
Display List may contain invocations of any graphic primitives implemented by the MicroEngine,
from Ibitblt calls to polygon fills. The Display List with which the Window Manager is concerned
contains only image elements that have not yet been drawn. The Window Process is not required to
retain previously drawn image elements. The Window Manager organizes the Window Description
data by window priority and flags windows which are in need of update. The MicroEngine traverses
the window list, executes the Display List for each window that needs updating, automatically clips
the output of each primitive it executes to the visible area of the window on the screen, and directs
output destined for obscured portions to the cached area in the Layer Pool. If a window extent is
changed to reveal a previously obscured section of frame-buffer, the Window Manager appropriately

- 16 -

Display Operating System

~ ~
Window window window
Manager process

....
process

~ ~r&, r i ,
I I -L_.J I I -
[J L_.J

Layer Pool Window Descriptions Per- Window Displav List
I

c=:::::J

Micro OJEngine

Frame Buffer

Fig. 2 - Principal Data Structures of original ECS Display Architecture

modifies the tiling information (represented in this case by a list of clipping rectangles) and signals
the MicroEngine, which then copies the cached layer section into position.

Although it uses wholly traditional techniques for both windowing (bitblt) and for imaging
(display list traversal), this architecture keeps these two operations separate throughout the
generally-visible portion of the system. The illusion of the virtual frame-buffer breaks down only
when the system runs out of memory for the Layer Pool, which was expected to be an unlikely
event.

The 6200 Display gained great advantage from providing orthogonal imaging and windowing
interfaces to application programs. Applications could be easily generated which used the imaging
(graphics) interface, but did no windowing, or vice versa. Application code did not have to worry
about having its window moved around the screen by the operator, about the current clipping boun
dary of the window, or about redrawing newly unobscured portions of the window. This approach
did, however, lack the ability to scroll or pan without moving large volumes of data, and performed
no better than equivalent hardware in this regard.

6.3. The VXL Window Hardware

The VXL·, despite the fact that it is character-mapped rather than bitmapped, is an interest
ing example of windowing hardware. The VXL is the first generally-available terminal to imple
ment overlapping, scrollable windows in hardware. The hardware used to provide this capability is
similar in principle to hardware which would be used to perform a similar function on a bitmap

• VXL is a trademark of Ann Arbor Terminals, Inc., the manufacturer of the terminal. The hardware was
designed by Jim Russo, Michael Sleator, and Marc Schuman, and the software was designed and implemented by
the author and Ken Rhodes.

- 17 -

terminal, though somewhat simpler and easier to examine.

The VXL provides a bank of Character Memory (28Kb) which contains a number of virtual
screens (which would be virtual frame-buffers if this were a bitmap). Theses screens are logically
(though not necessarily physically) contiguous strings of characters which, taken as a whole would
represent the entire viewable area of a window. Thus, a 60-line by 80-column screen is represented
by 60. 80 == 4800 bytes of character memory. The terminal processor treats this memory in the
expected way, as a two-dimensional array of characters, and inserts, deletes, or overwrites characters
in the expected fashion. There may be any number of virtual screens in the character memory. All
potentially displayable characters are necessarily contained at all times in this memory. There is
also one special area that contains a long line of background characters (typically spaces).

The hardware provides an additional, distinct area of memory, called Mapping Memory,
which contains a map of which positions in character memory are to be displayed on the physical
screen, and in what order. Mapping memory is organized as a list of records, one for each line of
characters on the screen. Each field in these records corresponds to a successive horizontal region
on the corresponding line. The field encodes the length of this region and an address in Character
Memory from which strings of characters are displayed. As an optimization, a field may also con
tain literal characters to be displayed.

The VXL Window Controller (represented in Fig. 3), traverses this list every frame, starting
at the beginning every time a vertical sync signal is received. It fetches a word of line-control attri
butes and the first field of the mapping record, and emits the address, decrements the duration
count, and increments the address. When the duration count reaches zero, the next field is fetched
and the process continues. In this way the Window Controller emits a stream of addresses, one for
each character to be displayed. This stream addresses the character memory in the expected way,
and the resultant stream of character data is directed to a fairly typical alpha-terminal character
generator and video back-end.

Video
Output

p g

addr - Character data Character
* tMemory - Generator

- ..
data

Processor addr i
Fontaddr _addr

*
Mapping

*
Window Memory

data
Memory

data
Controller

I

Vertical Sync* processor addressing channel

t video addressing channel
Char Clock

*window ma addressin channel
Horiz Sync

Fig. 3 - Ann Arbor Terminals VXL Hardware

To scroll a window vertically using this scheme, the terminal processor iterates over the win
dow map replacing the appropriate field in the each record with the analogous field from the previ
ous record. To scroll a window horizontally, the address in the appropriate field of each record is
incremented or decremented. If these modifications to the display list occur wholly during the verti
cal retrace interval, the change is effectively instantaneous. Since there can be no empty (zero
duration) fields in the records, creation and deletion of windows involves some fancy footwork,
specifically the insertion or deletion of the new fields in the record, moving any fields to the right to

- 18 -

create or fill the gap. Window borders are handled using the literal-character inclusion facility of
the mapping memory (not otherwise discussed here), and thus do not occur in character memory.
The VXL accomplishes all windowing operations, along with accepting input and decoding com
mands from four serial lines, with a 6-MHz Intel 8088 processor. The VXL windowing software
consists of about 1000 lines of C code.

The VXL hardware was designed in 1982. In late 1984, both AMD [13] and Intel [14]
announced low-cost alphanumeric CRT controllers that can be used to implement windows in much
the same way and with very similar data structures. The presence of these chips in the market
makes it likely that more windowed alphanumeric terminals will come into existence in the near
future.

6.4. Bitmap Window Controllers

Hardware which applies a control-list based memory-mapping scheme of this nature has been
developed at least twice, independently by John Providenza and Mike Zuhl of Tektronix, Inc, in
1981 and 1982, and by Michael Sleator of Ann Arbor Terminals, Inc, between 1981 and 1985.
Both systems provide similar capabilities, though the two implementations differ significantly. I will
concentrate on the latter system, dubbed the Tessera·[15],

Windowing hardware for a bitmapped terminal is much like that of an alphanumeric terminal,
except that words of frame buffer memory are mapped onto individual scan-lines, rather than map
ping characters into rows. Two difficulties arise, the first related to the increase of in the number of
potential vertical divisions (rows or scan lines) from fewer than 100 to more than 1000, and the
second the limitation of mapping only word-width units onto the display.

6.4.1. Bitmap Windowing Implementation

A data structure (like the VXL's) that for each horizontal scan line contains a series of
address/duration pairs will adequately map every 32 pixels on the screen into a word in the frame
buffer. The video-generation hardware clocks the window controller with three signals:

I} a dot clock (one cycle for each pixel), that is divided by the word width, and to which the
window controller responds by emitting an address from which the next displayed word is
read. At the beginning of the scan line an address/duration pair is loaded into registers, and
each time an address is required the contents of the address register is emitted and incre
mented by one and the duration register is decremented by one. When the duration counter
reaches zero, a new address/duration pair is loaded from mapping memory.

2} a horizontal retrace signal (one cycle for each scan line), which generates no address, but
instructs the window controller to move to the mapping data for the next scan line.

3} a vertical retrace signal (once per screen refresh), again generating no address, but signaling
the window controller to start again from the top of the mapping data, at the first scan line.

Since, for a 1024 by 768 pixel system, up to 192Kb of mapping information would be required
(assuming the naive format mentioned above), an unreasonably large investment in very fast
memory would still be required. Once we realize that window boundaries seldom occur on every
scan line of the display, or rather than many scan lines will contain exactly the same information as
the previous line, we can restructure our mapping information to take advantage of this. If a verti
cal duration count is placed in front of each line's worth of address/data pairs, the controller can
repeat those pairs until the that count is exhausted, then proceed to the next vertical section. The
data structure looks like this:

• Tessera is a trademark of Ann Arbor Terminals, Inc.

struct memmap (
int vrepeat;
struct mapfield {

word *addr;
int hdur;
int hscroll;
int color;

} horiz[tl;
} vert[tl;

- 19 -

/* vertical repeat count */

/* address of this section */
/* horizontal duration */
/* horizontal scroll info */
/* color-map information */

t - there are a variable number of these fields

For typical mappings this reduces the total amount of mapping memory by an order of magnitude.
The total size for a worst-case scenario where a window boundary occurred at every 10 vertical lines
and every 32 horizontal pixels would be somewhat less that 2500 address/horizontal duration pairs
and about 100 vertical duration counts, or less than 20Kb. The Tessera realizes further reductions in
mapping memory size by clever packing of address fields pairs, and in practice uses less 4Kb of
mapping memory.

6.4.2. The Zuhl-Providenza Hardware

The Zuhl-Providenza machine is implemented much differently. It does not require support
ing software to pre-tile the display into most-horizontal regions, but rather accepts a list of window
locations (upper-left-hand corner) and extents (width and height), and a coverage (z-axis) value, to
wit:

struct memmap (
int *addr; /* address of ULe of window in frame-buf */
Point scrn_ulc; /* screen address of window */
int height; /* height of window */
int width; /* width of window */
int depth; /* z-axis (depth) of window */

);

Many simple engines are each loaded with a individual window descriptions. Each engine
tracks the current horizontal and vertical beam address, and compares it against the bounds of its
assigned window. They then, for each address to be generated, vote on whether their particular win
dow is to be displayed. In the case of multiple yes votes, the engine with the lowest z-axis value
prevails, and its address is emitted. The engines are straightforward, consisting of only a few
counters and comparators each, and a complete window controller can be implemented by replicat
ing a large number of them on a chip together with a single z-axis priority resolution circuit. Unlike
the more general (and more expensive to implement) scheme of the Tessera, this technique is lim
ited in the number of windows it can handle not by the total amount of mapping memory, but by
the number of mapping engines provided.

6.4.3. Boundary Restrictions

In both systems, windows must begin on word boundaries in memory and on the screen. This
restriction can be lifted with the addition of an output buffer on the video stream. If the window
controller, which normally sits idle during horizontal and vertical retrace, can get ahead on the
translation during these periods, buffering up output later clocked out by the video circuitry, it can
access many more words of frame-buffer memory during a single scan line, allowing it, for example,
to fetch extra words when window boundaries are broken across word boundaries. An drawing of
this type of hardware is presented in Fig. 4.

- 20 -

addr

data

I

~ Line Buf _
Output Addr

Line Buffer (1024 bits)

Line Buf
'-

Input Addr

I

horiz
scroll
Ipreset

~ Barrel Shifter I
ytl

•

I

Frame-Buffer
Memory

-

data-

addr

Mapping
Memory

- Window
Controller

I

addr strobe

- Shift
Register

I
Video

• frame-buffer display addressmg
t line-buffer input addressing
*line-buffer output addressing

Sync SIgnals

Fig. 4 - Hardware Windowed Display Output Stage

6.4.4. Color

In a multi-plane color system where each plane receives the same stream of addresses from the
window controller, any changes to the window map are simultaneously affect the individual planes.
Thus windows can be created, moved, or scrolled without worrying about the color-swim produced
when the planes are sequentially affected. Color systems with multi-valued pixels are handled tran
sparently.

The window map can contain data other than address information. In particular, the Tessera
window controller emits several bits of color-map address information every time it emits a frame
buffer address. This information allows each window to access a distinct section of color map.
Thus, even though a window in an 8-plane color system may only represent 256 distinct colors, each
window (or each region on the screen) can display a distinct collection of 256 colors from a larger
palette. If enough color map memory is available, each window can have its own color map, elim
inating the problems associated with sharing this critical resource on most color window systems.
Other uses for additional window-map information are left to the imagination of the reader.

6.4.5. Scrolling and Panning

This system can map any rectangular region of memory from the frame-buffer onto the
screen, and by changing a very small amount of data in the mapping memory, (usually only a few
dozen words, loaded during the vertical interval) a window can be easily scrolled (vertically) by
scan-line increments, thus implementing smooth scrolling in real-time. With the additional of the
output buffer, smooth horizontal panning is also supported.

- 21 -

6.4.6. Implementation

The Tessera hardware has been prototyped in random logic using a bit-slice microprocessor,
some special-purpose hardware, a single 2k by 2k frame-buffer and a monochrome screen, and
works well. Window creation and deletion are instantaneous, and users can scroll the internal
frame-buffer across the screen as fast as desired, all without any visible tearing, inchworming, or
other effects. Virtually no processing power is consumed by windowing operations. This implemen
tation, unfortunately, is too expensive for inclusion in a Blit-style personal display, and at present, no
implementations of either the Tessera or the Zuhl-Providenza display are available. Despite the
cost, it is clear that hardware such as that described here is a necessity if windowing systems are to
make the leap to color, and if adequate performance is to be had in low-cost windowed displays.

7. Conclusion

The only thing that makes this technology 'next generation' is the fact that there are no exist
ing implementaitons. It should be possible for a clever hardware designer to create a chip imple
menting a system similar to those described above. Barring another unforeseen breakthrough in
windowing technology, the next generation will have come when it is as common for a windowed
display to use this style of hardware as not. It is hoped that that day will come soon.

In [6] reference is made to[4], in which the statement is made: Research needs to be done to
develop a way in which to conveniently store and manipulate graphics data in the context of a win
dow manager." While [6] provides an elegant software solution to this challenge, the hardware solu
tion, when fully realized, will change the way we implement windows as radically as virtual-memory
changed the way we wrote programs.

Acknowledgements

Thanks to Michael Sleator, who convinced me that hardware isn't all bad; to Jim Valerio, who
reviewed several early versions of this paper; and to Rob Pike who, as referee, provided helpful and
timely criticism.

l. R.F. Sproull, "Raster Graphics for Interactive Programming Environments," Computer
Graphics 13(2), <Originally, Xerox PARC CSL-79-6) (August, 1979).

2. D.H.H. Ingalls, "The Smalltalk Graphics Kernel," Byte 6(8) (August, 1981).

3. L. Tesler, "The Smalltalk Environment," Byte 6(8) (August, 1981).

4. N. Meyrowitz and M. Moser, "BRUWIN: An Adaptable Strategy for Window
Manager/Virtual Terminal Systems," ACM 8th Symposium on Operating System Principles
15(5) (December, 1980).

5. K.A. Lantz and R.F. Rashid, "Virtual Terminal Management in a Multiple Process Environ
ment," Proc. of the 7th Symposium on Operating Systems Principles, ACM.

6. R. Pike, "Graphics in Overlapping Bitmap Layers," ACM Transactions on Graphics 2(2)
(April, 1983).

7. S. McGeady, "Window Managers are Operating Systems: Software for a Distributed Graphics
System," Proc. of the 1st Symposium on UNIX and Graphics, USENIX Assoc., Monterey,
CA, December 1983 (forthcoming).

8. J. Clark, "The Geometry Engine: A VLSI Geometry System for Graphics," SIGGRAPH 1982
Proceedings (July, 1982).

9. NEC 7220 CRT Controller Data Sheet.

10. A. Levinthal and T. Porter, "CHAP - A SIMD Graphics Processor," SIGGRAPH 1984
Proceedings (July, 1984).

11. R. Rhodes, Haeberli, and Hickman, "MEX - A Window Manager for the IRIS,'' Proceed
ings of 1985 USENIX Conference (June, 1985).

12. T. Porter and T. Duff, "Compositing Digital Images," SIGGRAPH 1984 Proceedings (984).

~ 22 ~

13. Advanced Alphanumeric Display Products Specifications, (Am8052 Data Sheet), February,
1984.

14. Intel 82720 Data Sheet.

15. M. Sleator, Methods and Apparatus for Computer Display with Windowing Capability, U.S.
Patent Office (Sept. 18, 1985). Patent Application

Real-Time Resource Sharing for Graphics Workstations

Mark S. Grossman
Glen E. Williams

Silicon Graphics Inc.
2011 Stierlin Road

Mountain View, California 94043
(415) 960-1980

ABSTRACT

The IRIS is a real-time graphics workstation that supports object-space 3-D
graphics. In order to achieve concurrent graphics in windows, we have had to
address several issues involving resource allocation and synchronization. This
requires sharing special-purpose hardware among competing tasks. This paper
discusses solutions that involve UNIX· kernel and hardware cooperation.

1. Introduction

In less than ten years real-time systems have evolved from multi-rack behemoths to deskside
workmates. 32-bit microprocessors and custom VLSI contributed to the creation of color worksta
tions such as the Silicon Graphics IRIS. All of the power of such a device is meant to be used by a
single user performing multiple tasks with realistic response times. Although this device can be used
in a local area network, all the work for generating real-time displays is performed within the dev
ice.

The graphics workstation emerged as a productivity tool because it offers a general program
ming box and the perceptual impact of realistic pictures. In the era of the giant simulator, develop
ment and modeling were off-line tasks performed under a different operating environment. A
workstation is particularly valuable because it serves both as the prototyping/development tool and
as the end product itself.

Another outgrowth of technology evolution is that users now demand more task handling com
plexity. Many workstations are thus now providing some kind of window management capability, so
numerous views of a single project or multiple projects can be multiplexed.

The IRIS is based on the UNIX operating and provides a window manager that supports real
time 3-D displays. One might argue that "real-time", "multi-window" and "UNIX" are incompati
ble terms. Real-time implies that any given display process has to be able to respond instantane
ously to changes in some data base or input event. Multi-window implies that there are multiple
graphics processes, each of which has independent control over its universe of resources. UNIX has
traditionally meant unprioritized interrupts, unpredictable scheduling and substantial interrupt
latency. This paper discusses some ways to resolve these conflicting worlds in a workstation.

2. Some Criteria

A real-time system can be characterized by response time and data rates. System response
time has been defined as "the time within which a system must detect an internal or external event
and respond with an action." [6] An external event can be as diverse as a mouse movement or the

• UNIX is a trademark of AT&T Bell Laboratories.

- 24 -

arrival of a real aircraft's coordinates coming from a network node.

Vendors of every sort of graphics machine from PCs to visual simulators claim a right to the
"real-time" tag. Given a criterion of adequate response time, they do this by constraining the
system's generality or scene realism. Even the response time issue may be compromised by reducing
frame update rate for complex scenes. Newman and Sproull define real-time graphics as the ability
to scan-convert a 30 or 60 Hertz monitor with a changing picture at that rate. In these respects, a
$50 video game is a real-time graphics device.

For there to be a fair metric for comparing real-time graphics workstations, system data rates
must be measured at various levels. For example, it is equally important to measure the matrix
transformation rate of high-level database objects as it is to measure the time needed to scan convert
graphical primitives. Moreover, the solution to the data rate problem requires that attention be
focused not only on the performance of each component (such as a matrix multiplier), but the way
each is connected to its neighbors (system tuning).

It is regrettable that criteria in this area are so ill-defined. because response time directly
affects user productivity. For example, in a study performed by IBM [4], sub-second response to
human input was shown to be pivotal in the productivity of users with varying skill levels.

3. The IRIS

The IRIS is a system intended to address the above issues and constraints, yet deliver accept
able functionality.

The graphics hardware of the IRIS is divided into three pipelined components (Figure I): the
applications/graphics processor, the Geometry Pipeline, and the raster subsystem. The
applications/graphics processor runs the applications program, and controls the Geometry Pipeline
and the raster subsystem. The key component of the Geometry Pipeline is the Geometry Engine, a
configurable VLSI processing element for graphics [2]. Twelve Geometry Engines are used to build
the Geometry Pipeline subsystem that can map graphic primitives from user coordinate space to
some region of screen space.

HOST
PROCESSOR

GEOMETRY
PIPELINE

RASTER
SUBSYSTEM

Figure 1.

Graphics commands are sent through the Geometry Pipeline, which performs matrix transfor
mations on the coordinates that can be expressed as 2-D or 3-D in user space, clips the coordinates
to normalized eye space, and scales the transformed, clipped coordinates to screen space. The out
put of the Geometry Pipeline is then sent to the raster subsystem. The raster subsystem fills in the
pixels between the endpoints of the lines, fills the interiors of polygons, converts character codes into
bit-mapped characters, and performs shading, depth-cuing, and hidden surface removal. A color
value for each pixel is stored in the system's bitplane memory. The values contained in the bitplanes
are then used to display an image on the monitor, either through a color map or directly to the red,
green, and blue CRT guns.

Users write their applications in C, FORTRAN, or PASCAL. The IRIS Graphics Library
provides a procedural interface to the graphics capabilities of the IRIS. Most graphics primitives
translate into commands and coordinate data that are sent directly to the Geometry Pipeline from
the user's process. A subset of the graphics primitives is handled by the kernel graphics library
(KGL), which is an augmentation of the UNIX kernel. The KGL handles traditional kernel duties,
such as keyboard and mouse I/O. It is also responsible for directing events from such devices to the
proper window using "event queues". There is one event queue for each graphics process.

- 25 -

4. Design Considerations

We chose the architecture outlined above because of a few compelling principles.

Generality

Speed

Realism

The user should not need to worry about the physical limitations of the display
medium. Rather, he should be allowed to construct models in a high-precision
representational space. The Geometry Engines allow this level of conceptualization.
Accordingly, movement of a three-dimensional object produced in this space should
be specifiable in an efficient way. The Geometry Engine provides the means to do
this using no more than five "short" integers (I6 bits).

We wanted to provide a data rate high enough to be able to display dynamic scenes
with a reasonably high level of complexity (on the order of 4000 graphic primitives
per frame). This is achieved by offloading the geometric computing and the render
ing tasks to the Geometry Pipeline and the raster subsystem.

We wanted to produce smooth, realistic images. Double buffering allows the system
to generate the next scene without disturbing the displayed scene. In addition, it
provides true rate buffering between the update and refresh tasks. The IRIS
hardware supports smooth shading and depth-cuing of colored objects, which allow
generation of scenes with realistic lighting models and with enhanced 3-D percep
tion.

5. Questioning Bitblt

These considerations taken together: display space independence, fast scene rendering, and
color us away from the BITBlT approach to graphics.

BITBlT mainly copies pixels; optionally it can perform special logical operations between
source and destination pixels (RasterOp, [8]). We felt we wouldn't use the features of BITBlT for
three reasons.

1. Using logical operations on bits that represent colors would result in amusing but unacceptable
results.

2. Using BITBlT merely to move bits was simply not useful. A common use of BITBLT is moving
windows. However, a window's aspect ratio can change when it is moved. On the IRIS, the
contents are resynthesized, taking the new aspect ratio into consideration. Since the objects in
the window could have new shapes or sizes, BITBlT (i.e., a straightforward copy of pixels)
would not be appropriate.

3. Moving all those bits uses bandwidth. The efficiency of the bitplane bus is cut in half by
reading the bits before writing them. In the IRIS, the bits are generated and written by the
scan conversion hardware.

6. Evolution to UNIX

Given all of our hardware resources,. the question of how to provide a usable tool remained.
Motivated primarily by the desire to deliver fast graphics, we produced a terminal that is display-list
oriented. The user is provided a graphics library, an interface with which to create and manipulate
display lists in the terminal. The interface resides on the user's host machine; calls to it generates
tokens that are transmitted to the terminal (the media supported included serial line, IEEE-488,
IP/TCP and Ethernet.) The tokens are parsed in the terminal by an interpreter that has been
downloaded at boot time. The software in the terminal included the graphics library interpreter and
a real-time executive, the V kernel [1], which supplies us with a basic set of resource management
facilities.

The terminal met our expectations: it was fast and could incorporate data from valuators
directly into executing display lists.

However, display lists have limitations. Applications must often maintain two sets of represen
tations of the same data: the display lists and the application's data structures. For some applica
tions, the mapping is direct. However, some applications require that the user's data structures be

- 26 -

traversed, issuing graphics commands in passing. That is, rather than draw 100 points by construct
ing a display list containing 100 sets of coordinates, one could instead create a function that gen
erates the "point" commands and coordinates directly. Display lists are also difficult to edit.
Again, every change in the user's data structure must be reflected in the display list. Special tag
ging and pointer manipulation tools must be invoked to change any entry, especially if the internal
structure of the display list is not known to the programmer. But using the capabilities of a
general-purpose programming language, changes to graphics parameters can be made as part of the
general application maintenance.

Our company's solution was to create a workstation that extended and optimized the operating
system for faster graphics execution without requiring the user to build display lists. The worksta
tion by its very nature more tightly couples the general purpose computing engine and the graphics
resources. We were interested in choosing an operating system that could easily accept new peri
pherals. We wanted an operating system that already had a customer base, and finally, one that
was not too hard to port. We chose UNIX.

Having chosen UNIX, we then set out to minimize what we found to be deficiencies from a
real-time graphics perspective. We also designed a window manager that altows processes to run
real-time graphics simultaneously. In the workstation, there is still the concept of the "host" proces
sor, but in this case, it is a Motorola 68020 CPU that both runs UNIX and feeds graphics commands
to the Geometry Pipeline.

In designing the workstation, the numerous problems we encountered fell generally into five
categories: hardware ownership, processes and contexts, scheduling and synchronizing, load balanc
ing, and sharing hard resources.

7. Hardware Ownership

There are numerous ways to connect a piece of hardware to UNIX. One is to use "device"
protocols, whereby a client can allocate the resource through the open and close system calls, and
access it through read and write calls. In our analysis, this virtually precludes multi-client real-time
use, due to the number of kernel software layers needed to perform the underlying I/O operation.

Another connection mechanism is to have the hardware "owned" by a single process that han
dles requests from other clients and manages the hardware I/O. This requires at least two context
switches with an intervening scheduler call. The IRIS instead gives direct control over the hardware
to a custom part of the kernel itself, the Kernel Graphics Library. Messages and status information
are communicated to clients through a small section of shared memory. The kernel fields hardware
interrupts from the graphics subsystem, comprising coordinate feedback, vertical retrace, and other
events. In addition, a process that wants to do graphics is given direct write access to the Geometry
Pipeline through its memory space. This is the path over which most drawing primitives, such as
point, line and polygon drawing commands, are sent.

A special advantage in system bandwidth is gained from the pipeline structure of the graphics
hardware. Many commercial architectures treat graphics processing units--geometric computing
engines or rendering engines--as separate peripherals, connected to the system bus but not to each
other. In the IRIS, each unit communicates directly to the its neighbor, freeing the system bus
from the intermediate transfers.

8. Processes and Contexts

SGI conducted a special study on the UNIX System V scheduler in the interest of achieving an
interactive "feel" to the graphics [5]. A notable artifact, eliminated in the Berkeley Version 4.2
UNIX implementation, was the switch of the rescheduler into process 0 before it ran. A less obvious
problem was deciding just how to assign time slots to graphics users. We postulated that if a user
wanted to run some number of different windows, he or she wanted each window to have the same
responsiveness. The most-unused, round-robin scheme was maintained, but two changes were made.
First, the time slice given to each processes decreases according to the number of processes in the
queue, insuring adequate response to external events. Second, since the rescheduler algorithm was
left intact, the real time it takes for any process to decay to inactivity remains invariant with the

- 27 -

number of competing processes. This means that the user sees consistent behavior no matter how
many windows are on the screen.

8.1. Switching Overhead

One of the drawbacks of scheduling responsive processes under UNIX is the overhead of con
text switching. Many general microprocessor design tricks have been devised to expedite UNIX'S
job. A common focus is the memory address-mapping hardware. Most schemes embody a
context-segment-page map structure in some form. The page map, subdivided into text, data, and
stack segments, translates from virtual page addresses to physical memory addresses. Several con
texts, representing UNIX processes, own a set of segments coexisting simultaneously in a dedicated
map memory. Additional hardware detects limit violations to implement protection and demand
paging schemes. The result is a system that can efficiently switch among processes and maintain
high memory bandwidth.

But in the multi-windowed IRIS, a considerable amount of state data used in the graphics
hardware must be changed as the active window switches. This information--including transfor
mation matrices, drawing attributes, and color maps--can be considered the graphics context for
the current graphics process. There is a time lag between the UNIX process and the associated
graphics process, and there is currently insufficient storage in the graphics hardware for its own
inactive contexts. So two problems in swapping arise: the linkage between the two processes and the
overhead required to move graphics contexts.

Parts of the graphics context are sufficiently compact to be treated dynamically. Of these
many are shadowed in a data structure associated with the UNIX process, from which they are
rapidly sent to the hardware as an initialization step. Examples of these are the current color code,
linestyle, and shading mode. The other dynamic attributes-current graphics position and matrix
stack-must be retrieved from the hardware and saved in the data structure of the host processor.
Thus arises the linkage problem: the two parts of the system must cooperate synchronously in order
to perform the context-saving operation. The flow of state information across this graphics-UNIX
interface bears consideration as the secondary problem; it is sufficient to increase the switching time
by several hundred microseconds.

8.2. Context Reservoir

A key to solving the swapping problem is to view the graphics device as a true multi-user
resource. Optimum performance, at the expense of duplicate structures, could be provided in
hardware by placing a process list at every point where a dynamic variable (e.g., line style,
viewport) exists. This way a number of concurrent graphics processes can access their own attri
butes by means of a simple pointer movement, but this number has a fixed upper limit.

A more flexible solution takes advantage of the directional flow of graphics commands through
the pipeline. By adding a parallel path from the last processing element to the first, a mechanism
can be developed for managing save and restore commands independently of the UNIX processor
(see Figure 2). For a save operation, each element of the pipe passes its state information forward
to a reservoir placed at the end. For a restore, the appropriate command is passed to the "reservoir
reader", which is capable of issuing data for the new context to the upstream elements. Depending
on the size of the reservoir it can be viewed either as a cache for most-recently-used window states
or as complete storage for windows not currently updating. This enhancement would allow the
switching work to proceed concurrently in the host and in the graphics processors. This concurrency
and information decoupling can facilitate future development of schemes involving multiple
processes per window and multiple windows per process.

HOST
PROCESSOR

GEOMETRY
PIPELINE

- 28 -

RASTER
SUBSYSTEM

I

I IL J

Figure 2.

8.3. Feedback

The Geometry Pipeline can be used in other ways than displaying graphics. Part of making
graphics interactive is to be able to query the current state of the graphics scene. As we will show,
this kind of feedback poses problems in a multiple-graphics window system. The most interesting
uses of feedback are bounding box testing and picking. Here a set of clipping and/or scaling opera
tions results in the selection of a graphical object or the culling of objects from a display list. The
bounding box command sends a set of world-space coordinates down the pipe in a special operating
mode. In the process of mapping the coordinates to screen space, the results of comparison against
each of the clipping planes are recorded. The "or" combination of these results indicates how a par
tially visible object falls into the current viewport. The differences between the maxima and minima
of the coordinates indicate the size of the object in pixels. A bounding box that falls completely out
side the viewport will not produce any transformed output at all, and a message of this fact must be
produced. For a picking operation, the coordinates are discarded and only the object names and
clipping results are collected. Judicious use of local intelligence in the Geometry Pipeline can help
reduce the number of tokens necessary to send back to the requesting process; nevertheless, some
information must be transmitted.

The current scheme for any kind of feedback to the host processor involves the following steps.
The bitslice controller in the raster subsystem generates a hardware interrupt to the host processor
when it has collected the data to be fed back. The kernel, based on a message type code read from
the bitslice, understands the destination and size of the packet. Some messages, such as errors and
matrix stack contents, are directed to other parts of the kernel itself. Bounding box coordinates or
object names are copied directly into the memory space of the requesting process, which must be
locked in memory for the duration of the entire transaction. This is necessary because as long as
the Geometry Pipeline holds data to be fed back it cannot effectively perform any graphics tasks for
other users. Thus, not only must the application block for the interrupt servicing and pipeline
latency, but a special priority demand is placed on the scheduling mechanism.

An aggressive attempt to reduce the various latency times would have payoffs here. But some
amount of power and flexibility can be gained if the request for feedback can be decoupled from the
reception of feedback data. A single-task real-time system might not want to do this, but an optim
ized multi-task one might, especially if process-switching has been optimized in the system. The
freedom to swap in a higher priority competing process during a lengthy feedback operation may be
valuable. Further, the user may benefit from the ability to perform his own alternative task between
the request and reception.

An alternative to the current scheme which allows normal scheduling is to treat feedback
packets as messages placed in users' event queues. The kernel would have to perform the buffering
of the data for any inactive process. This buffering would halve the hardware-to-host bandwidth,
and incur additional overhead for the message-passing protocol.

Another alternative involves providing the same sort of reservoir facility in hardware for
context-specific buffering as was shown useful for the save-and-restore function. In this case the
switchability allows the creation of virtual feedback channels. It requires that a given feedback pro
cess be interruptable at any time at the hardware level. The end-of-pipeline processing element
would manage some number of FIFOs--either hard or soft--that would be allocated to graphics
processes performing feedback. The same commands that initiate state saving and restoring could
also control the activation and de-activation of the FIFOs. As with DMA, fed-back data is only

- 29 -

moved once: directly from hardware to the requesting process.

9. Scheduling and Synchronizing

This section concerns allocating fixed resources in a time-varying manner. Various graphics
subsystem resources must be shared by competing processes: the Geometry Pipeline, the color map
and the frame buffer memory.

9.1. Geometry Pipeline

The Geometry Pipeline is a device that is allocated dynamically. It is connected to the host
processor by means of a hard-connected port addressable by any process. An early problem was
reserving the hardware port long enough for a process to send a complete, atomic multi-word
command/data stream. We devised a "free/busy" token that provided synchronization without
incurring a great deal of switching overhead. As described in the Mex implementation paper [7],
the token bit is manipulated directly by means of a subdivision in the port's address space: sending
the first word of a command to one address sets the "busy" indicator; sending the last word to the
other address clears it.

When a graphics process is about to be activated, if the synchronization bit is in the "busy"
state, the scheduling of the new process must be delayed and the old one resumed. The time cost of
this, while less than a full context switch, still involves an interrupt period and a kernel startup.

This requirement arose out of the development of an economical data path that makes no
explicit distinction between commands and data, and of an economical state machine in the pipeline
processing elements that does not recognize command interrupts. A proposed enhancement would
provide fully interruptable processors that could respond to state-change requests at any time. Then
streams of commands from different processes could be sent with a compact change command as a
separator. As soon as the first pipeline processing element is through switching, processing the new
commands resumes.

9.2. Color Map Editing

Another interesting example of scheduling behavior concerns the color map. As with most
implementations, a single, shared address port to the color map memory means that host access
must occur when the color map is not being used for displaying visible portions of the screen. Thus
the most logical time to make changes is during the vertical retrace interval, when a relatively large
time window is available. An early solution was to force a process to block until the interval
arrived. In the current IRIS, map changes are sent as requests from the application to the kernel
and are placed in a software queue; when the retrace period arrives, a hard interrupt causes the ker
nel to send as many of the queue entries to the map hardware as it has time for. Meanwhile, the
application is free to make changes in the current color attribute used for updating the frame buffer.
This freedom must be carefully considered when using a single-buffered display to avoid flashing
items on the screen.

Again, the best solution seems to lie in offloading the queuing function to hardware. An
engine in the graphics subsystem would be given direct control over the writing of the color map,
and would receive the vertical retrace signal as an interrupt. This way a map-writing daemon
without the encumbrances of a UNIX process would be activated.

9.3. Frame Buffers

The constraints placed on synchronization by the retrace event extend to the sharing of frame
buffers. The raster subsystem, and hence the window manager, are capable of operating in either
single- or double-buffered mode. In double-buffered mode, a hardware flag determines which of
two sets of bitplanes is available to the update controller and which is actively refreshing the display.
In order to avoid "tearing" a dynamic image, the swap between the two is made only after a com
plete field sweep is made by the video beam. In an early implementation, when a particular window
had finished producing a new image in the update buffer, it sent a swap request to the kernel and
went to sleep until after the vertical retrace begins. The kernel at that time toggled the display and

- 30 -

reactivated any sleeping graphics processes. More recently, a semaphore was added to the shared
memory space that allowed the kernel to announce the retrace event to the clients. Graphics users
then could not only avoid the mandatory sleep/wakeup overhead, but could opt to schedule interim
subtasks with a simple polling mechanism to signal completion. With the further addition of a
field-locked timer, even more intelligent scheduling decisions could be made, either by the user or by
the system scheduler.

With the color map and buffer swap problems out of consideration, it seems attractive to free
the host of any concern over the display retrace event. By fielding all retrace-related activity and
allowing the buffer mode to be part of the graphics context, a powerful simplification of the
software is made possible.

10. Load Balancing

We have spent time considering how to make each subsystem resource perform graphics tasks
optimally. This section addresses the following concern: how can the user schedule resources in
order to achieve the fastest action possible with as complex a scene as possible?

10.1. Hardware Assistance

Hardware FIFOs have been heavily used as a solution to differential rate problems in real
time systems. If the data rate distributions can be adequately predicted at the system design phase,
a FIFO of appropriate depth can offer a straightforward tradeoff between the upper limits of
throughput and latency. For example, a longword FIFO between the processor and the Geometry
Pipeline smooths the transmission rate of commands by the graphics library code. In dedicated
flight training simulators built by Evans & Sutherland, a much larger FIFO, combined with careful
ordering of graphic primitives by software, minimized wait time between the geometric and display
processing subsystems.

10.2. Software Optimizing Filter

Certain classes of load predicting can be anticipated and handled with the aid of algorithmic
tools. The appearance of the directives would resemble predicates in theorem-proving languages.
Such directives can be generated by some of the more common latency scenarios in the system. For
example, certain commands bog down the Geometry Pipeline (the actual Geometry Engines), while
others become lodged in the raster subsystem. Currently, the programmer must balance the load if
the graphics is to run optimally fast.

Let's say a draw point command takes 10 usec to clear the Geometry Pipeline, followed by 2
usec in the raster subsystem. On the other hand, a clear screen command {which completely paints
the current viewport with the current color> takes 2 usec in the Geometry Pipeline and 15 msec in
the raster subsystem. Filled polygons fall between these limits. If 1000 polygons and 3000 points
are to be drawn, it makes sense to intersperse some of the polygons with points. Depending on the
depth of FIFOs within the system, the filter may suggest breaking up the sequence of commands by
sending 25 points for every 10 polygons for a substantial gain in throughput.

Lacking enough disparate commands to decluster (disparate in transformation/imaging
speeds), the filter may generate a suggestion that the application do computation at certain com
mand intervals. This can be quite useful in applications involving real-time motion, as some amount
of computation is required to guide objects through the scene. One implementation might link the
filter to the program by the filter's putting the main process to sleep and triggering a subprocess to
perform computation.

The filter can be running concurrently to the graphics process or it can be a preprocessor that
generates "good taste" programming suggestions to the graphics programmer. A subsequent version
of the filter could be a filter that actually runs parallel to the graphics process as a UNIx-style
filter. This filter would look for clusters of commands that can be reordered and feed them to the
Geometry Pipeline in a sequence driven by the recent history of what went down the pipe.

- 31 -

t t. Sharing Hard Resources

Certain resources in the graphics subsystem, such as the color map, are too large to be repli
cated or to be dynamically updated on a time-slice basis. These hard resources must be subdivided
and allocated among competing users, or shared in some cooperative scheme.

A traditional problem for multi-window systems is how to share screen space. A number of
elegant solutions exist in the literature, lying mostly in optimizations of display hardware and
BITBLT algorithms. [9, I0], In a system such as the IRIS, whose strength lies in its ability to rapidly
recreate window contents from a high-level description, the monolithic x-y addressed screen space is
broken into pieces that are managed by the window manager process [7]. It is up to the bitslice
processor in the raster subsystem to control the clipping of each graphics primitive to a list of rec
tangular pieces that make up a viewport. Performance degrades gracefully as complexity of window
overlap increases and pieces are added.

Many commercial systems reserve one or more overlay bitplanes to sidestep the plane-sharing
problem for high-priority displaying purposes. Examples are pop-up menus and special-purpose win
dows. These guarantee that response to user input is immediate, and the ports can be given highest
visual priority without requiring redraw of the background after erasure. These special planes can
also be given their own color map space, avoiding that particular allocation issue as well.

The color map is also considered a hard resource. Bitplane area has been divided up among
the graphics users, but the planes themselves ordinarily form a monolithic input bussed to a single
color map. Due to the size constraints of map memory {which are costly due to the very high pixel
rates they must accommodate}, most systems limit the palette to 256, 1024, or 4096 colors. Allocat
ing these few among applications that are unable or unwilling to share can frustrate users.

Here the idea of overlay planes can come to the rescue, especially when generalized somewhat
to the idea of identity (ID) planes. We propose reserving a small set of bitplanes that can act as a
guide to the use of the remaining planes without serving as color map inputs. Rather than giving a
single overlay highest viewing priority, the ID planes hold both the priority level and the palette
selection for each viewport on the screen.

We start by assuming that a user may want to see activity in overlapping and non-overlapping
viewports, but may not demand a great depth of viewport overlap. Thus we can assign the same ID
to all non-overlapping viewports at the same depth (Figure 3). So n ID bits translates to 2n layers
of non-overlapping viewports on the screen. Viewports are moved or re-prioritized by erasing and
filling a suitable area in the ID planes with the desired shape or ID number.

ID 1:::1 1

ID = I

ID = 3 ID = 2

ID = 0

Figure 3.

Having entire bitplanes' worth of memory for IDs may eat up savings made in the color maps,
but certain unique advantages accrue. Window priority level can apply on a pixel-by-pixel basis.
The raster update engine would compare the ID value stored at a pixel location with the current
window layer number before updating that pixel. This permits arbitrary shape viewports to be

- 32 -

drawn into, trading one serial task for the bitslice processor per rectangular piece for perhaps many
parallel tasks at the pixel level. Second, having decided on a maximum color map size, the 10
planes can be used to select an alternate map of equal or smaller size. As IDs increase linearly, the
number of maps can also increase linearly, rather than by powers of two. Finally, the 10 planes can
be used to make per-viewport buffer or bitplane set selections. In conjunction with a set of multi
plexers or crossbar-type circuitry, a great deal of independence in hardware-to-window assignments
can be achieved.

11.1. Font Management

In the IRIS, the font store is a sharable hard resource. The fonts are stored at the "end" of
the system as two-dimensional masks. The masks are kept in a special font memory integrated with
the bitplane update hardware. Commands to paint characters into the frame buffer are passed
through the pipe; characters are rendered by writing' the current color into the bitplanes at pixels
corresponding to "ones" in the masks. This scheme is used because it is compact. Even so, it is not
feasible to swap font sets with processes. The bandwidth required is too large: the font memory is
loaded by passing the font information through the pipe.

We chose not to represent characters as spline outlines that can be scan-converted for two rea
sons. First, the customers do not yet need a large font mix: the current font store is large enough.
Second, at this resolution, the fonts need to be tuned. While there are methods to tune fonts algo
rithmically, such a procedure does not lend itself to real-time operation.

To add a larger font set, we have considered providing a character-mask cache with DMA
support. This would allow many more fonts at higher volume. This is also useful when considering
grayscale fonts, which take more space. In either case, storing the fonts near the bitplanes is attrac
tive for bandwidth considerations. Note that even with the DMA approach, there is no concept of
pairing graphics processes with font sets and that this must be managed through the cooperation of
the concurrently running processes. But given adequate hardware, we could meet the goal of provid
ing context-sensitive DMA capability. This can be done by maintaining hardware address tables for
fetching fonts associated with the current process.

12. Function Migration

A pattern of migration is emerging in graphics devices-more and more complex functions are
moving to hardware. This continues the trend that started when the original graphics controllers
were introduced in the marketplace. [3] The migrations discussed here suggest that a multi-window
graphics system should be complemented by hardware possessing multiprocess capabilities. Develop
ing faster and faster rasterizing techniques will of course improve real-time performance; but more
important is the process of adding moderate amounts of intelligence to provide virtualization of the
resources associated with a window (i.e., each user thinks he owns the machine completely). The
pitfall with adding this intelligence is that someone will eventually want to program it in order to
customize it. The proper way to offer this power is to provide a layered procedural interface to the
system. The lowest level might contain a few domains that present their interfaces to the next
higher level. When a user needs to access or modify the system at a given layer, it is his responsibil
ity to leave the interface intact.

13. Conclusion

General purpose real-time graphics systems are not cheap to build. Demands of a wide variety
of applications create problems that must be handled flexibly by an architecture, meaning a larger
system. User understanding and involvement in the implementation of the real-time aspects of the
package are key to optimal performance. A system that provides comprehensible tools for dealing
with these aspects is a key to users' success.

- 33 -

Acknowledgements

Jim Clark and Marc Hannah invented the Geometry Engine. Kipp Hickman, Paul Haeberli,
Peter Broadwell, Rocky Rhodes, Henry Moreton, and Tom Davis implemented the IRIS UNIX and
graphics software. These people and many others contributed to our thinking in this paper.

Bibliography

[ll Cheriton, D.R., and Zwaenepoel, W., "The distributed V kernel 'lnd its performance for diskless
workstations", SIGOPS Operating Systems Review (ACM), 17 (5) July 1983.

[2] Clark, J.H., "The Geometry Engine: A VLSI Geometry System for Graphics", Computer
Graphics, pp. 127-133, 16(3) July 1982.

[3] Clark, J.H., "The Wheel of Reincarnation", Panel, "Fundamental Algorithms: Retrospect and
Prospect", proc. ACM SIGGRAPH, July 1985.

[4] Doherty, W.J., and Thadhani, A.J., The Economic Value of Rapid Response Time. 1982; Inter
national Business Machines Corporation, White Plains, New York, 10604.

[5] Hickman, K., "Some Enhancements to the System V Scheduler", unpub. memo, 1985.

[6] Hindin, H. J, and Rauch-Hindin, W.B., "Real-Time Systems", Electronic Design, pp. 288-318,
January 6, 1983.

[7] Rhodes, R., Haeberli, P., and Hickman, K., "Mex - A Window Manager for the IRIS'', proc.
Portland USENIX conference, 1985.

[8] Newman, W.M., and Sproull, R.F., Principles of Interactive Computer Graphics, 2nd ed.
McGraw-Hill, 1979.

[9] Pike, R., "Graphics in Overlapping Bitmap Layers", ACM Transactions On Graphics, 2(2)
April 1983. '

[10] Wilkes, A.J., et. aI., "The Rainbow Workstation", University of Cambridge Computer Labora
tory, Cambridge, UK. August 1983.

GLO - A Tool for Developing Window-Based Programs

Thomas Neuendorffer

Carnegie-Mellon University

CDEC, 202 UCC

5000 Forbes Ave.

Pittsburgh, Pa. 15213

tpn%cmu-itc-linus@@pt.cs.cmu.edu.ARPA

1. Introduction

GLO (the Graphic Layout Organizer) is an application builder's tool designed to provide easy
access to the facilities of Carnegie-Mellon's window-oriented Andrew system l

. It allows one to
arrange a set of layouts (rectangular sub-windows) within a window, define their actions, create a
working prototype, and ultimately turn that prototype into a final application. Certain built-in lay
out types are predefined to provide the application's builder with tools to do text-editing, program
interfaces, control buttons, and simple animated graphics. Applications using only predefined layouts
may be created with no programming whatsoever. More complex applications can take advantage of
GLO's client interface to create user-defined layouts, define interactions between the various layouts,
or define actions to take place upon a menu selection or a mouse hit. There is also support for appli
cations that use multiple layout sets.

GLO itself is a combination of three tools. The first is a special-purpose editor designed to
manipulate layout set descriptions, consisting of a graphically-depicted layout set and a series of lay
out descriptors. The second is a prototyping tool that knows about the predefined types and can
rapidly produce a mock-up of a final application. Lastly is a program library that allows the pro
grammer to combine the layout set with application-specific functions to create a final product.

The following document describes GLO and steps through the creation of an interactive sym
bolic debugger like Sun's D8XTOOL, using GLO and about 100 lines of application specific code.

2. Background

A major development effort is taking place at Carnegie-MeHon University to develop software
for the "3 Mil workstation (one million instructions/second, one megabyte RAM, and one million
pixels)2. This effort is centered around Andrew, a software system developed here by the Informa
tion Technology Center UTC) and built on top of 4.2 BSD UNIX. The system currently runs on a
variety of hardware, including Suns and Vaxstations.

The ITC has produced some very powerful tools for handling the window environment in a
consistent way. In addition to window manager routines, these include a base-editor library that
allows the client programmer to embed text editing functions within an application, and a layout
manager library to allow an ajplication to organize and interact with various objects (both textual
and graphic) within a window. One might consider these 'level 2' tools, over and above the 'levell'
tools of BSD Unix.

Unfortunately, while this may be a 'hacker's heaven' of sorts, it does not fill the needs of many
faculty and students, who are coming from the world of PC's, Mac's and Tops 20 mainframes. Our
approach to this problem at CDEC (the Center for Design of Educational Computing) is to provide

- 35 -

a third level of tools to the applications builder. These are designed to support easier and more
immediate access to many of the levelland 2 tools. By simplifying the program creation process,
we hope to facilitate the development of discipline-specific software by faculty and students.

3. User Interface

The G LO program has three basic modes.

3.1. Draw Mode:

This is where one specifies how layouts are to be placed in the window. The mouse may be
used to divide the window into layouts, either creating new divisions or moving existing ones. In this
way, a tree of parent and child layouts is built. The relative position of layouts in this window will
be maintained in the both the prototype and final application.

3.2. Select Mode

In this mode, clicking the mouse inside the desired layout will select it for definition. Parent
layouts <i.e. layouts that contain sub-layouts) are selected by pointing to the line separating its two
children. When a layout is selected, a document describing it will appear in an editor at the bottom
of the window. Document attributes will be described in the form:

<attribute name> == <value>

New layouts are given the type ;n;l. When the user chooses a type (by replacing the word init
with the type name), the attributes appropriate to that type will be inserted into that document.
New values may then be assigned to any attribute name.

The following layout types are currently supported:

3.2.1. Base-Editor (be)

Any number of these editor layouts can be defined. They allow the application user to edit
existing documents or create new documents. The GLO programmer may also take advantage of the
client interface of the base-editor to interact with the user via one or more of these layouts. File
names can be wired in, or a user prompt can be provided. Attributes controlling write access, file
checkpointing, keymaps, and menu items may all be specified if desired.

3.2.2. Multiple Base-editor (mbe)

Works as above, except that multiple file names may be specified. A buttons layout may be
associated with this layout to allow the end user to switch between several different documents
within the same layout. Any number of initial files may be specified. Files may be added or
selected at any time'by the client program.

3.2.3. Typescript.

A typescript is an editor interface ~o an executable program. The default program is the
cshell, but any stdio program may be specified (with or without arguments). There is also a facility
for passing the application's arguments to the program running in the typescript. The client program
may define filters to modify user 10 to the program.

The above three layout types are all based on the Andrew Base-Editor and may have Menu
Map attributes associated with them. The MenuMap attributes have the form

MenuMap= < MenuHeader,> [Prompt]:[Function] < :KeyMap>

and any number of them may be assigned to each layout. These commands will allow the GLO pro
grammer to customize the actions of a layout by creating menu prompts on the deck-of-cards
menus, and associating these prompts with programmer-defined functions. The optional KeyMap
field may be used to indicate what key-bindings should be associated with the menu action. The
optional MenuHeader field may be used to indicate which menu card is to contain the prompt.

- 36 -

3.2.4. Buttons.

Here a set of strings may be defined which will translate into labeled control buttons to
occupy the layout. In the running application, a mouse hit on one of these buttons will call a pro
grammer defined routine specified in an attribute. Multiple buttons layouts with different control
ling routines may be defined.

3.2.5. Fad.

Fad (for Frame Animation Drawing), is a drawing editor designed for animation of simple
line drawings and icons. The 'artist' works by creating a 'frame' of lines and icons using the mouse.
This frame may then be copied to another frame and the lines and icons moved. The program can
then animate these frames by interpolating between the corresponding points. Since frames may also
be displayed individually, and display may be controlled by user routines driven by other layouts,
fad is a useful tool for providing illustrations. Multiple fad layouts are available.

3.2.6. User-defined

By specifying the name of routines to be called for layout redraw and mouse input, the pro
grammer can completely define the action of any number of layouts.

3.2.7. Other layout attributes

In addition to the type-specific attributes described above, all layouts are given a unique name
which client programs can use to access and alter the layout. Like other attributes, this name can be
set as desired. Box and border attributes may be set to put an n-pixel black box or white border
around a layout.

3.3. Prototype Mode

When all the layouts are set up to the user's satisfaction, the next step is to enter prototype
mode. At this point, several things happen:
(Note: name represents the name of the GLO application, specified as the main argument to GLO)

1. A file (name.GLO) is created containing the layout descriptions. This file is interpreted by
both GLO and GLO applications and contains all the information necessary to create a layout set. It
is the only file read by GLO when GLO is used to modify an existing GLO application.

2. A second file (name_table.c) is created containing information that must be compiled into
the final application. This is basically just a table relating the various layout names with their asso
ciated function and keymap pointers.

3. If the -k option was specified, keyboard Ckbd) files will be written to indicate the relation
ship between menu hits and function calls specified in the MenuMap definitions.

4. If the -m option was specified, a makefile (makefile.name) will be written that is capable of
compiling the C files, the keyboard files, and the necessary librarys into the final application. It
assumes that user defined functions will be contained in the file name.c.

Once these files are written, GLO makes layout manager calls to display a prototype of the
final application. This prototype will contain working versions of the predefined layouts, along with
dummy layouts where the user defined layouts will be.

This prototype can be used to test out the feel of the layout set in windows of various sizes. It
can also be used to create the editor files and Fad diagrams.

4. Client Interface

As stated above, the GLO programmer may not need to write any C code at all. A default
mai:lO function is even included in the GLO function library. Between GLO, the base-editor, and the
layout manager however, there are quite a number of client functions that may be called to facili
tate building complex applications.

The base-editor provides facilities for examining and editing documents while GLO provides

- 37 -

some higher level interfaces to these functions. The function glo_Te//Typescript, for example, will
insert a string into the typescript view and pass the line on the the program running in the typescript
as if it were typed in by the user.

In general, the programming model that is best supported is one where an application program
starts up in some steady state, and actions are initialized by menu hits, mouse clicks, or keyboard
entry.

s. Multiple Layout Sets

A facility is provided to allow an application to deal with a series of layout sets. Each layout
set is created separately with GLO and tested. A separate program (glocombine) exists to combine
GLO table files and makefiles to produce an application that can support multiple calls to glojnit.
This function can create or restore the layout trees described in the .glo files. The makefile produced
is also capable of making any of the applications individually, so one doesn't need to deal with mul
tiple makefiles. These 'super-applications' may also be combined or added to with additional calls to
glocombine.

6. GLo-DBXTOOL, a sample application.

GLo-DBXTOOL is a window based interface to the DBX debugger4
, functionally similar to the

DBXTOOL program released by Sun Microsystems.5 By using Andrew and GLO I was able to cap
ture much of the functionality of the Sun DBXTOOL by writing only about 100 lines of application
specific C code. In doing so, I also created a machine-independent application that readily recom
piles on any Andrew machine. Unlike Sun, I made no changes to DBX itself, and I made a few sim
plifying assumptions <i.e. that the most relevant DBX files will be the .c and .h files in the current
directory). None the less, the resulting program has proven to be useful both on its own merits and
as a demonstration of the power of GLO. It also demonstrates a general facility for creating window
and mouse interfaces to glass tty programs.

- 38 -

glo dbxtool Irwin glo dbxlool I?w"in

...

-

Clear
Redraw
CI~ar Illst t>ox

fo!'B=~

Woelcomoe to the graphic layout etJitor

~youtname =dbxtoo!-l
~youtType a mbe
box'" -I
border a '1
It multiple base editor layout option.
DocumentUame. = dbxtool.d
DisplayBultons '" true

~:ft~IIX~:etst~n:'A~'::: = true
ChecltpointFile :::: fliise
KeymllpU Ame = DefllulLlCeymap
AddMenuProcName =- dummy
InitProcUame = getflle.
Shuto:SownProcName :::: dummy
MenuMlip c Find File:flndlinecom

~:~~~:: :: ~nJ~ru:~II::~~~~:~~Ct ~

Fig. 1: GLO has been initialized and three
mouse clicks have produced the desired layout
arrangement. The menu is being used to enter
selection mode.

LAyoutnamoe = 1bxtype
~youtT:;pe = typescript
Typ,:scnptArgs = dbx
Typ,:scriptImmorul = true
box = ·1
bord~r a -1
K~ymapUame = D':fault_Koeymap
AddMenuProcNam,: = dummy
InitProcU ame = typelnit
Shut1ownProclhm-: = dummy
Men'JMAp Fin1 File"findlin-:com
M~nuMAp = Instructlonl:inSlruc~

Fig. 3: A typescript layout to run DBX is
described. Two of the menu choices from above
will be included.

Fig. 2: The top layout has been selected and at
tributes for the multiple base-editor type have
been chosen. An initialization procedure (get
files) will be defined to add default files to the
layout. MenuMap options to find a file
described by DBX, provide instructions, and add

"new files to the layout have been added.

LAyoutname =1b"too!-)
~youtTYp,: = butlons
ButtonStrings = Current File !lame.Current Line
llumb':r.Current S~lection.R':turn .wh':re.run (args).set (vIr>.
trace <var>.cont at <Iine>.trace <linelt or Vir or proc>.trace In

~~:~i~;t:::tltep.~~lCt.pr~~~n oe ><:~~~.Wha:i~ <~f~~~~Whtl~~
<namel.wher,:is 'name>.set ('/lIr) c <name>.fiIe [filename)
HitProcllame = 1bxbutton

Fig. 4: A buttons layout with DBX commands is
added. For this implementation, I decided to
provide buttons that will insert the current file
name, line number, or selected words from the
editor layout into the DBX layout.

- 39 -

10 dbxtool Irwin

-f
Welcome to DbXtool

..e ect layout or rJ..man~o to eXit select mooe

-- # indicate desired parent layout options
Layoutname =dbxtool_2
box:::: 3
border = -1
The following apply to the two child layouts of this parent
LlneBetween true
AboveorBeside :::: false

';urrenl file llanle enter object file name ldefault IS 'a. out");
CurrenI Line Number

Current Selecuon
Return
where

run [Mssl
set (VM)
Irace (vu)

cont It <lIno)
'race <lIne# 01 Val or proc)

Iree In <proc)
IloOP al <line)
SIDP In <PIOC)

SlDp <VII)
stetus
SlOp
nelt

print <up>
_haIlS <nMle>
which <nune>

wherelS 'nMle>
set (v." • <name)

fll~ fl1-n-mfl

Fig. 5: This shows the attributes of a parent lay
out. By setting the box attribute, we put a 3 pix
el box around the DBX and button layouts.

: .
r-

Welcome to Dbxtool •
Here are some polnu FDes I
to remember abOUt Icon I
using the program:

Mise I
1. The tOP line Fad
contains the currently E)available files (ie the
.c and .h files of the Next frame

current directory,). - LaSt frame

Clicking the mouse on : ''''fi7.''' rr3m~a file name will bring r-r ADlm,ue portiOn

~litin;.h~her:i1a~ ~~:
options for saveing the
current file. saving all
olJUUnding files. and
finding your position in
a file.

'--
2. The next section is
where the file editing -
~:'~~~rd b~:: eedlto; hi~ -
used. A menu option
(Add File) is available -to add additional riles
to the available file
liSt. j(
3. The bottom right is
the typescript layout
for interacting with
t:lbx. In addition to the
standard typescript
menu options,

at lI',lIllC ,l;'L,

Fig. 7: GLO has been reinitialized to create the
instruction layout set. We are in prototype
mode to enter the documents text and set up the
fad animations.

Fig. 6: Here we have entered prototype mode.
The editor, the buttons, and DBX are all func
tional though not interacting with each other.

.. .. , ISAVIt PILE dbllDOl.re4l.c ..Ai' 41l.-loable.c
SAVI! ALL PILES oIl.-2Mlp.c combo_loable.c oIl...Menus.c'. WHERE nn_teble.c dbllDOl..Menus.c dbltypeMap.c

dbllDOl.d Inslrucl.-IMap.c InslrUct.c zzz_4M4p.C
.....~re~ft~ .~~!~,~~tu~~le.~~ ,",._~17"'bl.'" ,.!~l~~~"

C "" \U·;

Ib = bull; ob "" buf2;
flag "" D;

bii:
for(c = Ib; (I c: ;getC(inf» 1== EOF; c++)(..

·c "" 1
}

·C "" '\D';
whlle(l)(

InltO:

: Currenl file !lA/M

I ldbl:) wh~,e
Current Ltne Number mai"'argc :::: 2, argv :::: Dxfffe8D. Dxfffe8c),Current ::elecuon

""jim line 113 in "rotate,c"
(dbx)

lun (ulsi
Search IJOt <Val>

Iface <VII> Edit Icont at <line>
!lace <lIne# 01 Val or proc> Document Ilf4Ce In <proc >

'lDp et <line, Styles Istop In 'prce>
stop 'VoU> - tilSIIlIUS

,tep - • PaH~

ntxt

~'EW='=-print 'UP> r- -
wha'JS 'name> . '--which <nanlt> Quit

wherel' <nMle)
se' (Vi'r> • 'nmo>

nle (llienamel I-

In,,: 11J HI rOIJI~C

Fig. 8: The completed DBXTOOL in use.

6.1. Completing the application

Combining these layout sets is done simply with the one command:

glocombine -0 glodbxtool dbxtool instruct

Once the functions are written in the files dbxtool.c and instruct.c, the command 44make -f
makefile.glodbxtool glodbxtool" will produce the final application. The C code for dbxtool.c may be

- 40-

found in the appendix.

6.2. Running GLo-DBXTOOL

The final application is called just as DBX would be called.

dbxtool [options] [object file] [core file]

The application calls gloJnit to bring up all the functioning layouts. GloJnit in turn calls the
application's getfiles function which adds the .c and .h files of the current directory to the mbe but
tons layout. Glo-init also starts DBX running in the typescript layout and brings up the glo-defined
buttons layout. At this point the user has a number of options.

Chosing the Instruct menu option will bring up the alternate layout set to instruct the user in
the use of DBXTOOL. Instructions will be displayed in an editor window while a Fad animation pro
vides illustrations. State information of old layout sets is saved when a new one is initialized. Thus
the menu option return to dbxtool will return the user to the same place he left off.

To edit one of the default files, the user need only click on the button with that file name.
Other mbe buttons will save the current file, save all mbe files that have been modified, or tell the
user what file is being edited.

The user may use the keyboard to interact with DBX in the typescript layout. Alternately,
clicking the mouse on one of the DBx-command buttons will type that command to DBX and click
ing on one of the buttons prefixed with the word Current will enter information regarding the the
file being edited. Thus DBX commands may be built up and entered without touching the keyboard.
There are also a number of functions built into the typescript layout that facilitate ease of use. For
example, there are key-strokes for repeating or editing previously entered commands, and menu
options for accessing a cut-and-paste buffer common to all layouts.

The locate menu option will attempt to parse the current DBX line for a file name and loca
tion. Finding this, it will bring up that file in the editor layout and position the cursor at the speci
fied line. See Fig. 8.

Note that while certain GlO information must correspond to what dbxtool.c expects <the for
mat of the file information buttons for example), other information is more flexible. Thus, if the
application's developer decides that a smaller set of DBX commands might make the program easier
to use, or that the DBX buttons should go on top of the DBX layout, these changes can be made sim
ply by using GlO to modify the dbxtool.glo description. The application does not need to be recom
piled.

7. Disadvantages of GLO

GlO applications tend to be very large, using sizable portions of virtual memory. There can be
difficulty in debugging applications where control flow is passed around between various tools of
which the end programmer has little knowledge. And as with all high level tools, it is sometimes not
clear how to perform some low level tasks that were not anticipated by the tool's designer.

One should note however, that these problems were already apparent in applications using only
the tools that GlO was built on top of. The bottom line is that the amount of functionality provided
seems to make the trade-offs reasonable for many applications.

8. Future

The Andrew Base-editor and Layout Manager are in the process of undergoing a complete
rewrite and GlO will have to be rewritten to accommodate them. A major addition will be a
dynamic linking facility which should further facilitate fast and flexible application development.
Another tool to be incorporated into GlO is C-MuTutor, an Andrew implementation of the Micro
Tutor language6 developed for the PLATO project at the University of Illinois. C-MuTutor is an
incrementally compiled authoring language, designed for writing educational materials. Within the
context of Andrew, C-MU Tutor is proving to be a very useful tool for handling complex graphic
displays, as well as various types of interactive computer-based instruction. It is hoped its addition

- 41 -

to GlO will produce a 'Swiss army knife' programming tool that will have something for most every
application.

9. Conclusions

The goal of GlO was to create an environment with which faculty and students could create
useful windowing applications with a minimum of Unix and Andrew experience. What was produced
is a tool that supports several models of applications building.

The first model is a programmer given a project to develop on his own. With GlO as a tool
box, he can plan out where he wants to go before he gets there. A structured style develops that
encourages separation of function and user-interface.

Similarly, a model where one or more program designers can prototype an application and
experiment with interfaces before turning the result over to an experienced programmer is also sup
ported.

Lastly there is the case where a program has been (or is being) developed for a glass tty
environment. As in Glo-DBXTOOl, GlO supports interfaces to allow the application to take advan
tage of the windowing environment, without becoming useless when only a tty is available. There is
also the possibility of running something like a lisp or awk application in the typescript layout and
using the output to drive a graphic simulation.

In all cases, the use of GlO provides a fast prototyping tool that isn't just thrown away when
it comes time to do the real application.

10. Acknowledgements

Thanks to Bruce Sherwood, David Trowbridge and Jill Larkin for their support and sugges
tions regarding GlO. Special thanks to James Gosling, Fred Hansen, Bruce Lucas, Andrew Palay,
David Rosenthal, and all the ITC upon whose work GlO is based.

11. References

1. James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H Howard, David
S. H. Rosenthal, F. Donelson Smith, "Andrew: A Distributed Personal Computing Environment",
Communications of the ACM, in press.
2. The Task Force for the Future of Computing, Alan Newell (Chairman). The Future of Com
puting at Carnegie-Mellon University. Available from author.
3. James Gosling and David Rosenthal, The User Interface Toolkit, Proceedings PROTEXT 1
Conference, 1984.
4. "dbx(I)", Unix Programmer's Manual - 4th Berkley Distribution, July 18, 1983.
5. Evan Adams and Steven S. Muchnick, DBXTOOL, A Window-Based Symbolic Debugger for Sun
Workstations, Proceedings USENIX Users Group Conference, Summer 1985.
6. B.A. Sherwood and J.N. Sherwood, The MicroTutor Language. Stipes Publishing Co., Cham
paign II, 1985.

·42 .

12. Appendix: dbxtool.c
#inc1ude lI andrew.h ll

#define DBXTOOL II/itc/itc/tpn/g10/test/dbxtoo1 11

#define INSTRUCT "/itc/itc/tpn/g10/test/instruct ll

struct view *
glo_findview(), *typescriptview;

char *glo_mbewhere();

main(argc, argv)
int argc;
char *argv[];

{

StartToo1(argv[0]); 1* initialize the base editor and layout
* manager *1

glo_ForwardArgs(argc, argv);I* forward arguments to the program
* running in the G10 typescript *1

glo_init(DBXTOOL); 1* create and initialize the layout tree
* for dbxtoo1 *1

while (TRUE)
Interact () ; 1* loop forever while interacting with the

* user *1

typeinit(a, b, v)
struct layout *a;
struct view *v;

{

typescriptview = v;

1* Called by g10 on initialization of the
* typescript layout. *1

instruct ()
{

glo_init(INSTRUCT);
1* initializes the instruction layout *1

}

1* parse a dbx line for file name and line
* number if found, place file in mbe
* window *1

register char *1, *c, *fi1enm;
char *getview1ine();
int 1nm = -1;
fi1enm = NULL;
1 = getview1ine(typescriptview);
for (c = 1; *c 1= ' '; c++) {

if (*c == '1' &.&. strncmp(c, "1ine II 5) -- 0) {
c += 5;
sscanf(c, "%d", &.lnm);

find1inecom()
{

}

else if (*c == '11')

c++;
fi1enm = c;
while (*c 1= ,,,, &.&. *c 1= ' ')

- 43 -

c++;
if (*c -- , ,)

break;
"c = , , .,

}

}

if (lnm < 0 II filenm == NULL) {
TeIIUser("Insufficent data on line");
return;

}

glo_robefindfile(filenm, lnm); 1* Displays the file in the robe
* layout *1

}

1* add all relevant names in current
* directory to the mbe file list *1

DIR *dirpt, *opendir();
struct direct *readdir(), *dt;
char *malloc();
char *dirname = ".";
if «dirpt = opendir(dirname» == NULL)

return (NULL);
for (dt = readdir(dirpt); dt 1= NULL; dt = readdir(dirpt» {

if (issource(dt->d_name» {
glo_MbeAddFile(dt->d_name);

getfiles()
{

}

}

closedir(dirpt);
return;

}

issource(s)
char

{ 1* return TRUE if string is a .c or .h
* file *1

register char *c;
char *rindex();
return «c = rindex(s, '.'»

&.&. « *++c == ' c ' I I *c - - ' h') &.&. *+ +c - - ' ');
}

char *
getcurrent(c)

register char *c;
{ 1* returns information about the robe file *1

int i, j;
static char buf[256];
struct view *v, *glo_mbe_view();
struct document *d;
switch (*c) {
case 'L': 1* return current line number *1

if «c = glo_mbewhere(&.i» == NULL)
return (NULL) ;

sprintf(buf, "%d", i);
break;

- 44-

case 'F': 1* return current file name *1
if «c = glo_mbewhere(&i» == NULL)

return (NULL);
s printf (buf, II %s ", c);
break;

case '5': 1* return current editor selection *1
if «v = glo_mbe_view(» == NULL)

return (NULL) ;
i = v->dot.pos;
d = v->document;
if «j = v->dot.len) -- 0)

return (NULL);
for (c = buf; j--; i++)

*c++ = CharAt(d, i);
*c = ' ';
break;

default:
return (NULL);

}

return (buf);
}

dbxbutton(i, c, mask)
register char *c;

{ 1* Insert the buttons string in the
* typescript at the current carrot
* position *1

if (*c == 'c' && strncmp(c, "Current ", 8) -- 0) {
if «c = getcurrent(c + 8» 1= NULL)

FencedInsertString(typescriptview, c, strlen(c»;
}

else if (*c == 'R' && strncmp(c, "Return ", 7) == 0)
TypescriptReturnCommand(typescriptview);

else {
while (*c 1= ' , && *c 1= '[' && *c 1= '<')

FencedInsertstring(typescriptview, c++, 1);
if (*c == ' ')

TypescriptReturnCommand(typescriptview);
}

return 1 « i;
}

addfile()
{ 1* Prompts for and adds a new file to the

* mbe layout file list *1
register char *C;
if «c = AskUser("", "File Name? "» 1= NULL)

glo_MbeAddFile(c);
}

WINDOWS IN THE HOSPITAL

or

A WORKSTATION-BASED INPATIENT CLINICAL
INFORMATION SYSTEM

in the JOHNS HOPKINS HOSPITAL

Stephen N. Kahanet. Stephen G. Tolchin*t, Marvin J. Schneider**,

Debra W. Richmond, Patrick Barta.t, Margaret K. Ardolino.

and Howard S. Goldbergtt

The Johns Hopkins Hospital
(t and the Johns Hopkins University School of Medicine)

(* and the Applied Physics Laboratory)
(** and SOFfA Technologies, Inc.)

(tt and the Albert Einstein College of Medicine)

ABSTRACT

The Johns Hopkins Hospital (JHH) is developing a new, comprehensive clini
cal information system. This system integrates many distinct functional subsystems
using a local area network. One such subsystem is a new inpatient clinical manage
ment system. The components of this inpatient system are workstations, a mini
computer and a network connecting the workstations to the Hospital Ethernet.
This paper discusses the workstation component of our proposed inpatient system.
The reasons for choosing workstation technology, the attributes deemed important
for medical workstation development, the results of an evaluation of workstations
and the plans to develop the new system are reviewed.

1. Introduction

The Johns Hopkins Hospital is a 1000 bed teaching and treatment facility located in Bal
timore, MD. The Hospital currently has a collection of clinical information system components
which have been developed and operated by different departments under a decentralized manage
ment structure. A pre-planned approach for the efficient sharing and transfer of data did not exist
when these systems were implemented. Therefore, ad-hoc special-purpose, low-speed interfaces
between systems were developed when a need existed.

Generally, duplicate data entry into the various systems occurs due to the absence of
comprehensive application-level integration. This is costly and results in data inconsistencies. Furth
ermore, automated support for clinical functions is minimal. Therefore, in 1984, the JHH initiated
development of a m9dern comprehensive clinical information system. A key objective of this system
is to achieve functional integration of the current and future clinical systems by applying local area
network technology. The Operational and Clinical Systems (OCS) Division was formed to prepare
and implement the plan.

A major subsystem of the hospital-wide clinical information system is an inpatient clinical

- 46 -

management system that is workstation-based. The Inpatient system will support:

• admissions planning based on pre-admit notice

• inpatient care management - daily care plans, patient event scheduling, clinical data retrieval
and display, generic medical information retrieval, remote order entry, clinical correlations and
analyses

• access from terminal, touch-tone phone, personal computer or workstation (local and remote)

• concurrent (with hospitalization) practice monitoring and review ("concurrent review")

• discharge planning and interface to outpatient service scheduling

• production of an automated clinical resume on discharge

• patient chart abstraction and diagnosis coding to support the current reimbursement methods

• maintenance of census - support for discharge and transfer

• generation of billing information

This paper starts with a review of the current operational systems at JHH. This is followed by
a description of the current methods for managing inpatient clinical information and of the architec
tural alternatives that are available for the development of the Inpatient system. This paper then
discusses the workstation project goals, the clinical functions that need automated support, the
workstation evaluation criteria, our experience developing several demonstration systems (worksta
tion experience) and workstation project plans.

2. Review of Current Systems and Architecture

There has existed at the JHH a collection of independently developed and operated computer
centers which process various, frequently duplicated clinical, financial and administrative informa
tion. Several low speed interfaces (4800 baud and less) have been established to exchange informa
tion for certain very high priority situations. The following is a description of the various computing
centers which are depicted in Figure I:

• an IBM mainframe shop consisting of a 3081 and 3083 running VM/MVS in a CICS TP
monitor environment. Clinical applications include an admissions, discharge, transfer (ADT)
system with many add-on functions and an Inpatient Pharmacy system. The Hospital's finan
cial systems run on these computers. A separate Patient Identification (PID) system contain
ing about 1.5 million records in a VSAM file runs on this computer, however most outpatient
services do not have on-line access to this system, nor are other clinical systems functionally
integrated with this system. Information is obtained by telephone calls to Medical Records
personnel; the latter are the only individuals with on-line access.

• a Department of Laboratory Medicine (DLM) Information System which runs on three
PDPP1I70 computers running InterSystems MUMPS Mil + native. Low speed interfaces
connect this system with the IBM mainframe to pass admit and change information to DLM
and to pass lab results back to the mainframe for display on 3278 terminals on the clinical
wards.

• an Oncology Center system which runs on two PDPPI/70 computers running InterSystems
MUMPS MII+ and TEDIUM. This is a sophisticated system which supports many clinical
functions in the Oncology Center. It is connected by low speed lines to the DLM to transfer
lab results.

• an Anesthesiology and Operating Room scheduling system which runs on a PDPPI/84 under
InterSystems MUMPS and TEDIUM. This system is stand-alone.

• a VAX 111750 computer running VMS with InterSystems M/VX MUMPS, the Wollongong
Eunice UNIX emulation system for VMS and the Relational Technology, Inc. INGRES rela
tional database management system. MUMPS is used to support the current Emergency
Medicine system, which is developed in TEDIUM. The D}ergency Medicine system is
currently stand-alone, yet it keeps the only on-line clinical patient history in the institution.

• two PDP 11/70 computers running InterSystems MUMPS Mil + native support the Johns

- 47 -

Hopkins School of Medicine. These computers provide professional fee billing services and
scheduling services for the Johns Hopkins Internal Medicine Associates. These systems are
stand-alone.

• a VAX 111750 running BSD 4.2 UNIX and INGRES is being developed to support the Wil
mer Eye Institute. This system will be used primarily for research.

• three Pyramid 98x super-minicomputers running the OSx dual port of AT&T System V
UNIX and BSD 4.2 UNIX currently support the OCS Division of the Johns Hopkins Hospi
tal. These systems are being used for many new development projects. INGRES and both the
DoD IPITCP and Xerox XNS/SPP networking protocols run on these machines.

• several special touch-screen reporting stations which allow radiologists to compose reports and
uplink them to the IBM mainframe to support the Department of Radiology. This enables
radiology reports to be available on-line immediately after readings in most cases. Plans call
for changing the type of reporting stations and connecting these to the Pyramid supporting the
radiology information system under development. Reports would then be transferred across the
network to workstations on clinical wards as well as to the mainframe (for an interim period,
to allow access from 3278s currently on the clinical wards,)

Several other computer systems are also operating at the JHH for specialized purposes. None
of these systems process transactions with the IBM mainframe system to obtain PID information;
consequently there have been several, mutually inconsistent PID files extant. Also, functional inter
faces to support a wide range of clinical and administrative needs do not exist.

An extensive Ethernet has been installed to connect these computing centers. IP/TCP and
XNS/SPP protocols are used on the network. The IBM mainframes have been connected to the
Ethernet using an AUSCOM 8911A block multiplexed channel adapter. This device supports the
XNS/SPP protocols offloaded from the host. The Sun Microsystems Remote Procedure Call
(RPC) and External Data Representation (XDR) (for integer and string types) protocols have been
implemented in MVS/CICS on the IBM and over XNS/SPP on the Pyramids to enable high speed
transaction processing across the UNIX and MVS/CICS environments.

The OCS Division is implementing several new systems under UNIX on Pyramid 98x
machines using INGRES. These include:

• the Long Term Database (LTDB) which is accessible from all the computers across the net
work. It contains records on approximately 1.5 million patients, including patient identification
(PID) and demographics, clinical encounter summary and some financial information. This
replaces the mainframe PID system. The mainframe admitting system accesses this database
using RPCs. Synchronization of replicated data is handled by an RPC-based commit protocol.

• a new Radiology Department information system, integrated into the network for scheduling,
film tracking, on-line report access, resource management and other functions. A network of
personal computers (MS-DOS based) connected by a 3Com Ethernet that serves the Depart
ment will also be integrated with the system.

• a new Emergency Medicine system for complete on-line support with special focus on clinical
needs and urgency of care as well as administrative and financial functions.

• an Outpatient clinical information system to support many of the outpatient clinics at JHH.
Initially, patient identification, registration, and appointing will be supported, but the major
long-term focus includes clinical support.

• a new Inpatient system which will itself be a distributed subsystem using workstations on the
clinical wards. The workstations will be connected to the hospital network and will be closely
coupled with a super-minicomputer holding a complete copy of the inpatient clinical database.
OCS has several workstations which it is evaluating for the development of the inpatient clini
cal system. These include Xerox 6085 and 8010 equipment running the Xerox Development
Environment (XDE) and Viewpoint environments, Sun Microsystems equipment running BSD
4.2 UNIX, and AT&T UNIX PCs running UNIX System 5.2.

- 48 -

3. The Inpatient Information System

3.1. Current Method of Inpatient Information Management

On the clinical wards at JHH, patient information management is semi-automated. While
requests for services such as blood tests, radiology studies, and consultations are processed manually,
a subset of inpatient test result reports are available on-line.

At our institution, manual methods have been shown to have detrimental effects (Blum, 1983)
in that they are associated with high transcription error rates, high communication error rates, high
staff requirements and prolonged request processing times. In addition, a variety of problems limit
the on-line system's (result reporting) clinical usefulness. Results are kept on-line for only three
days. The login procedure is awkward and data access paths are hierarchical and cumbersome.
Displays are static and display formats are not uniform. Only a single test result (or part of a test
result) may be displayed at any given time. There is no support for (generic) medical information
retrieval, and there are no automated (implicit or explicit> decision support tools available. There
are no facilities to support document preparation. With rare exceptions, data collection is via secon
dary computer data entry or via ad hoc dictation and transcription.

3.2. System Requirements and Architectural Alternatives

3.2.1. Overview

The inpatient system must communicate with all ancillary services for ordering tests and pro
cedures, scheduling patient events, and receiving results. This requires interfaces to many systems,
including: Department of Laboratory Medicine, Inpatient Pharmacy, the Radiology Information
System, Admission-Transfer-Discharge, various billing systems, and the Long-Term Database. The
inpatient system must maintain a database of clinical information on current and recent inpatients,
including test results for the duration of the encounter. Other databases of generic medical informa
tion (eg. disease or drug information) should be available.

The inpatient system should support implicit and explicit decision support tools. An example
of the former is the intelligent grouping of clinical data for display (even if components of the
display come from different specimens). Behind the scene cross-checks such as drug-lab test
interactions based on accepted medical protocols is another example. An example of tools providing
explicit decision support is a facility to provide a list of diseases worthy of consideration given some
set of patient signs and symptoms entered by the user.

The system must extend to the clinical wards and support the operation of clinicians and cleri
cal staff in ordering, requesting, entering, retrieving, displaying, and analyzing patient clinical and
administrative information. This includes generation of care plans, transmission and display of
graphic data, graphing (charting) of values for trend and other analyses, and local printing on the
ward. Integration with the telephone system for call reception/message logging and call generation
is desired. The ability to leave notes and messages electronically and to communicate via electronic
mail with other hospital areas is very desirable.

The user interface must be simple to use. There must be several display/entry devices (3 or
4) per clinical unit as well as quality hard copy output (e.g., a shared laser printer.) The system
should provide the ability to tailor the functional support to the specific needs of different depart
ments or divisions. Communications and display of simple images must be supported.

3.2.2. The Alternatives

Four architectural alternatives may be identified for the general design of the inpatient sys-
tem. These are:

centralized. This approach provides highly centralized logic which is shared by all users. Users
are served by ordinary CRT terminals and, where required, by graphics terminals. This
approach would use a fairly large central computer to handle a heavy interactive and compu
tational load.

- 49-

2 clustered. This distributed approach provides shared logic in clusters, with each cluster sup
porting a collection of user communities (several clinical wards'> Users are served by ordinary
CRT terminals and, where required, by graphics terminals. This approach could use several
supermicrocomputers networked together.

3 highly distributed - diskless. This approach distributes logic onto the clinical ward. Each
user's computer support consists of a bit-mapped display and intelligent device with local
memory. A server for hard disk support and paging across the network would be needed for
every dozen or so workstations. The database support would be provided by either a distri
buted database across these servers, or by a single "central" networked database server, or by a
combination of both schemes. The central database server could be both a backup to the other
servers as well as a single location for access by CRT terminal users. Sun Microsystems' and
Apollo's diskless workstations and servers are representative of this model.

4 highly distributed - local disk. This approach enables each workstation to operate from a
local disk on which the operating system and possibly a portion of the database would reside.
A "centralized" processor would network with these devices; both would also connect to the
JHH Ethernet. This processor would contain the backup to the databases kept in all the clini
cal workstations to provide reliability and to protect against data loss and perhaps to perform
computationally intensive tasks for the workstations. Remote network access to servers such
as databases would be provided. In this scheme, the workstations provide customized support
for each clinical unit and can handle many local management tasks for the ward. The "central"
processor would support a regular CRT terminal community for many functions not requiring
workstations. Xerox 6085 and Sun workstations with local disk are representative of this
model.

3.3. Architecture Discussion

The first alternative is modelled after the classical DP center, but fails to satisfy all of the
requirements and is not particularly cost effective. A networked graphics terminal on each clinical
ward would cost almost as much as a workstation. It would place a very heavy I/O load on the cen
tral machine. The central machine would be a single point of failure for the system. Also, the cen
tral machine would be used for user display management and other programs as well as database
access and would therefore require considerable computing capacity. Response times probably would
not be as good as if data were stored local to the user on a clinical ward dedicated device and would
probably not be better than remote access to a network database server from the workstations which
would offload display management and user "front-end" support.

The second alternative adds complexity without satisfying the graphics and cost objectives any
better than the first alternative. Perhaps 15 supermicros would be needed with each supporting 3 or
4 clinical wards. This would be expensive and would impose technical difficulties. For example,
which supermicro should Lab send a result to?

The third alternative allows a collection of clinical wards to be supported by a single server
remote from the workstation location. Each such collection forms a distinct subsystem. Data repli
cation is somewhat reduced as is overall system reliability. The diskless workstations cannot operate
stand-alone, thus a different approach is needed to place workstations in physicians' offices. How
ever, this alternative does permit creation of the desired user interface on the workstation.

The fourth alternative is a hybrid solution which provides both a unique central database
server, local data storage as necessary and special capabilities in the workstation for creating sophis
ticated user applications. Modest central computing capacity is required since display management
and user "front-end" and other processing are off-loaded from any central computer. The worksta
tions can access the "central" database system, as well as any other server system on the JHH net
work (this would include special AI-based expert system servers, library reference systems, as well
as databases and applications on other systems.> The workstations provide improved reliability (no
single point of failure), and scaling (easy to add another workstation).

The distributed approach is the solution adopted for the JHH inpatient system architecture
(see Figure 2). We are evaluating vendor products and the tradeoffs between local hard disk vs.

- 50 -

subsystems of workstations sharing a server.

The model for distributed computing on which the system design is based is the client - server
model. Remote procedure calls across heterogeneous systems are used to allow processes on one
computer (e.g., workstation) to invoke procedures on remote machines by executing what appears to
be a local subroutine call. This is done in a way that isolates applications programmers from the
details and complexity of network mechanisms. We intend to use this model to allow processors and
workstations to access remote databases, expert system servers and computational servers in a uni
form manner. Similarly, commitment of updates to replicated data will be treated as a client appli
cation. To date, the Sun RPC and XDR protocols have been used. If we select Xerox workstations,
then Courier will be implemented in the UNIX systems.

4. The Clinical Workstation

4.1. Introduction

The Clinical Workstation (CWS) is the tool that makes a complicated distributed system
understandable to its users. It transforms medical information from many different sources into a
form familiar and useful to health care personnel. It allows transparent access to systems that pro
vide a host of auxiliary services. Local processing power allows sophisticated display, manipulation
and analysis of this clinical information. Local processing power also facilitates the use of tools that
provide a multimodal communications interface that should help with data collection and entry
(johannes and Kahane, 1985).

4.2. Goals

What is unique about the workstation is that it reflects the way health care professionals think
and work; users are not constrained by conventional computer representations of information (eg.
sequential, hierarchical, single-tasking). With these things in mind the specific goals of the CWS
Project may be summarized as follows:

• to build a clinical workstation that allows health care professionals to interact with the
hospital's computing facilities while hiding the system's distributed nature;

• to employ the desktop metaphor to provide a familiar and flexible user environment;

• to provide facilities for consistent and uniform tool manipulation throughout the system (an
easy to learn and easy to use interface);

• to utilize local processing power

in conjunction with context dependency specifications to capture and display only
required clinical information,

in conjunction with special purpose tools (eg. voice recognition systems) to facilitate data
capture,

in conjunction with a local relational database to structure clinical data and support ad
hoc querying,

in conjunction with local intelligence and the multi-windowed environment to facilitate
the intelligent display of clinical information (Polister 1984, Streveler and Harrison
1985),

in conjunction with medical information retrieval and decision support tools to provide
an environment that helps optimize the quality and efficiency of clinical care delivery;

• To build in the hooks necessary to support communication with all other health care delivery
sites. (This paper discusses only the inpatient system.)

- 51 -

4.3. Functions

Interfaces for the physician, nurse, clerk, and other allied health professionals are being
developed and will exist in parallel. Though staff functions vary greatly, it is possible to categorize
workstation functions into the following groups:

• Request Entry with Automated "Backend Processing" - Examples of facilities that will be sup
ported include remote request for blood studies, special testing, consultations, and therapeutic
interventions.

• Clinical Data Capture - Real time data collection in clinical settings has proven to be a diffi..
cult problem. Because of this, applications have relied on secondary computer data entry or
ad-hoc dictation for data capture and recording. Both of these methods have significant draw
backs including the requirement for extra staff, the increased time elapsed between event and
computer data capture, the errors incurred secondary to the interposition of another human
process, and certainly in the case of dictation, unstructured data collection. The use of the
computer as a tool for clinical data collection has been delayed because of problems with the
interface and because of a lack of incentive for use. To address these long standing problems,
we are studying the effects of using graphics, icons, pointing devices and voice recognition
technology as tools for improving data collection and documentation for a group of procedures
that report on the visual inspection of a portion of the human anatomy. We hope to develop
systems that structure data collection without limiting data content flexibility. The availabil
ity of an integrated set of tools to support the practice of clinical medicine will provide the
incentive to use our system.

• Clinical Information Display - Display of clinical information supporting concepts of logical
grouping, reduction/emphasis, and segregation/transformation techniques will provide implicit
decision support for health care professionals. Tools for explicit manipulation of clinical infor
mation will be provided as well. Demographic information will be available since there are
times that such information is clinically important. An on-line patient schedule will be main
tained as will the problem list and medication list.

• Medical Information Retrieval - Methods to access databases of clinical information and data
bases of medical literature citations will be supported. Several of the databases will be sup
ported locally (we need laser disk technology or something comparable), while others will
reside at locations outside of the Johns Hopkins Medical Institution. Efficient and easy to use
interfaces will be developed where such interfaces do not already exist.

• Clinical Decision Support Tools - Conventional approaches as well as non-conventional
approaches will be supported. Much of the support will be implicit (eg. drug-drug or drug-lab
test interaction checking, dynamic formatting of data display, .. .). Facilities for explicit use of
certain tools will be supported as well. Examples of the latter include tools to support building
decision trees, doing risk analyses, doing threshold analyses, doing cost-effectiveness analyses,
and doing sensitivity analysis. As mentioned, tools utilizing artificial intelligence techniques
will also be supported. Some tools will probably use a combination of these conventional and
non-conventional approaches.

• Patient Care Plan Development - Certain databases or file browsers will contain information
helpful in the construction of patient care plans. The documents will be created with informa
tion obtained from a variety of sources including:

patient-nonspecific information obtained from the databases described above

patient-specific information obtained from the on-line patient database

patient-specific information obtained from the individual constructing the plan

The information will be pertinent only for the patient for which it is constructed. The multi
windowed environment will help facilitate the construction of these patient-specific care plans.
Related to inpatient stays, care plans will be constructed to help with critical path planning,
discharge planning, and post-stay follow up care planning (discharge instructions with scheduled and
yet unscheduled follow up visits).

- 52 -

• Communication Capabilities - Electronic communication facilities will support free-text mail
and forms transmission. Users will have facilities to construct their own forms as well (eg.
history and physical, daily rounds).

4.4. Workstation Evaluation Criteria

The workstation should be based on models of professional/machine interfaces which have
been proven effective in research and actual use. Sufficient resolution to present multiple active win
dows and subwindows of text, graphic, tabular and form-based information must exist. Windows
should be scrollable, movable, and sizable. Icons, pop-up menus, pointing devices, and subwindows
should be supported. Sufficiently powerful and fast local intelligence to provide memory for the
bit-mapped screen capability, simultaneous active windows with good response times, and hard disk
management must exist. Functional integration of communications capabilities into the JHH Net
work must be provided. The ability to emulate multiple terminal types, including VT-100 and 3278
is required. Support for additional dumb terminals and a local, inexpensive laser printer is desirable.
A software development environment should provide an interface to all tools, to the window
manager, the pointing device and to certain application programs.

One check list of criteria being used at JHH to aid in the selection of the workstation is shown
in Table 1. Issues related to the system's price, performance, communication capability, user inter
face, application development environment, and physical characteristics are being studied.

4.5. User Interface

4.5.1. Introduction

As mentioned, the user interface is extremely important to the goals of clinical information use
and capture. Systems must be capable of displaying a complex collection of integrated clinical infor
mation in a way that is easy to use and to understand. The presentation of complex medical data in
a useful, informative format leading to rapid, consistent clinical decisions is similar to the presenta
tion of a collection of complex business information to management. Computer scientists have
recognized this problem for some time and have been developing "executive workstations" as a solu
tion. Our concept of the clinical workstation is analogous to this.

In addition to clinical information display, the problem of clinical information capture must be
addressed. Historically, the clinician - computer interface has always been a problem. The problems
include: keyboard data entry, difficulties in finding time to learn to use a system, reliance on dicta
tion and handwritten notes. The challenge is in building usable human interfaces for information
capture and in building tools for structuring "free texf' for database entry of clinical and billing
information. The best information is that entered from the clinical source; passage through layers of
clerical personnel is expensive, produces costly errors (of omission and commission) and reduces the
timeliness of information.

4.5.2. Existing Technology

JHH is evaluating technology suitable for constructing clinical workstations. There are three
generic types of workstation product available. At the high end are very high resolution, powerful
devices designed primarily for CAD/CAM/CAE applications. These devices have resolution that
enables display akin to a color photograph in some cases. Examples of these systems are the
MASSCOMP, Apollo and Sun high-end workstations. These systems are too expensive for use as
clinical workstations at JHH, they cost from about $10,000 to $40,000.

At the low end are the PCs with various software products to provide windows, mouse support,
etc. These PC implementations suffer from problems of single-tasking operating systems (only one
actile window at a time), slow response times, inadequate screen resolution, inconsistency in the
interface and a non-integrated very weak subset of functionality and limited tools for new applica
tions development.

The third class of workstations are recent products with lower cost and high performance.
These products include the AT&T UNIX PC (also known as the PC 7300 or the "Safari-4"), the

- 53 -

Xerox 6085 Professional Computer System, lower cost workstations from Sun Microsystems and
Apollo. Various other UNIX-based products with mouse and window capabilities which are
expected to appear soon. Prototype clinical workstations have been developed using the Xerox and
AT&T systems; work has also begun on the Sun-3.

5. Experience

5.1. The AT&T UNIX PC

5.1.1. Introduction

Our first prototype was built on the AT&T UNIX PC. As a beta test site for this machine,
our organization had an interest in developing a test application which would exercise its capabili
ties. Also, it had the first available multi-tasking, windowing, and graphics system environment
which met our price/performance requirements. Development proceeded using standard UNIX tools
(C, yacc, uucp, etc'> familiar to the programming staff, plus command- and subroutine-level facili
ties available in the User Agent. The User Agent is the multi-window user interface provided with
the UNIX PC.

5.1.2. Development of a Demonstration

In about 2 person-months of design, programming and debugging, we developed a system that
demonstrated key CWS goals. The user interface that windows provide was successively refined.

Figure 3 shows what the user sees after logging in. Selecting items on this menu with the
mouse allows the user to request tests, X-rays and consultations, view laboratory data or patient
schedules, browse through on-line medical information, access a citation service, use decision support
tools, or prescribe medications. Figure 4 shows a sample of the system as a user requests a radiol
ogy study. Pop-up windows prompt the user for information that is then used to construct a requisi
tion in a second window. The requisition window can be reviewed and then, following some form of
"electronic signature", information is conveyed to the remote site.

5.1.3. Architecture

The UNIX PC architecture was robust enough to develop a useful prototype with the impor
tant exception of adequate networking capabilities. We were able to simulate network communica
tions using uucp to remote systems. We also implemented an ASCII subset of the Sun RPC proto
col to work via the serial RS232 ports. Despite limited communications speed, this sufficed to
demonstrate workstation communications in a distributed network.

5.1.4. The Development Environment

The main problems we encountered in building this prototype were deficiencies in the software
development tools, in processing throughput and in screen resolution. We were handicapped by hav
ing only a set of low level tools for creating, manipulating and destroying windows and interacting
with the mouse, and a much smaller set of high level tools for designing forms, menus, type fonts,
icons, and customized windows. Although the low level tools (called TAM-terminal access method)
were reasonably complete, they were primitive and required extensive manipulations of physical
rather than the logical properties of windows. On the other hand, the high level tools directly sup
ported the logical units that we designed into the prototype such as forms, menus and windows for
displaying text. These tools were simple to use, (eg. a text file to describe the structure and content
of a menu window) but, they were often inflexible.

We were astonished to find that there was no window-like equivalent to the UNIX more com
mand when we wanted to display text in a window and have it scroll up and down by pointing to
arrow icons in the window borders. Although another command, uahelp, in the UNIX PC develop
ment software solved this problem (and reformatted the text when the window changed shape, as
well) it was frustrating to have to match the application to the tool (by inserting extraneous control
characters into simple text files). This command also imposed unreasonable limits on the size of the

- 54 -

input file. Although we clearly saw that the TAM package could provide primitive building blocks
for a complete windowing package, we were unwilling to develop the bulk of the necessary develop
ment tools for a windowing environment ourselves. Source code was unavailable, and we realized
that it was important to have the right tools for developing window-based applications.

Many of the applications we envision involve forms, menus and windows containing text, but
our access to their representation on the screen and the flexibility with which we could manipulate
them with the high level tools was too restrictive in the AT&T UNIX PC environment. A signifi
cant limitation was the lack of subwindow capabilities. None of the supplied tools readily support
the visual concept of tiled windows inside other windows (subwindo/ws or "panes.") If each menu in
a command sequence comes up within its own window, for example, the visual effect is often either
one of clutter (if all the menus remain displayed) or similar to a flashing neon sign (if wind9ws are
alternately created and destroyed). We feel that the visual metaphor of subwindows considerably
adds to the presentation of information in a logical style as was done in the "System Browser" of the
Smalltalk-80 programming system, or the organization of shape and texture icons in the current
microcomputer programs for freehand drawing, such as MacPaint. Also, forms with headings and
scrollable text or columns need subwindows to group related items appropriately.

The processing speed of the UNIX PC was sometimes slow, especially when using shell scripts.
Since the high level windowing tools are often invoked from the shell, this often led to perceptible
delays in putting up the next window. If the system was loaded with 2 concurrent graphics-intensive
tasks, delays in updating the screen became intolerably long. Unfortunately, the high level tools
available forced us to use relatively inefficient shell scripts rather than calls to C routines. Some of
the performance problems were made even worse by the very slow disk access speed.

The graphics resolution of the UNIX PC was also inadequate. The 720 x 348 pixel array (I2
inch diagonal screen) proved to be too coarsely grained for our tastes. One advantage of a window
based environment is that several windows can be displayed at once. For a given screen size, the
fineness of the resolution determines how many windows can be viewed without objectionable losses
in clarity. The limit to how many windows that we could use in the UNIX PC was controlled not
by the physical size of the windows but by the clarity of the window image. In other words, small
window objects were hard to read because they were poorly resolved, not because they were too
small to see.

At the end of this effort, we had a working prototype, an appreciation of what software tools
were required to develop applications programs for a windowing environment and a rapidly growing
shopping list of applications that we felt would be well-matched to the windowing user interface that
we were designing.

5.2. The Xerox Development Environment - MESA and PILOT

5.2.1. Introduction

The Xerox Development Environment is a software development package that relies heavily on
the use of icons t graphics and the mouse. The multi-windowed environment provided in XDE runs
on the Xerox 8000 and 6085 series of computers. Currently, all software development is done in
XDE using the MESA programming language running in the PILOT operating system. The target
environment for Xerox workstations is ViewPoint, which provides a more controlled and well-defined
user interface. ViewPoint, the successor to Star, provides an office metaphor, so users manipulate
documents, folders, file drawers, in- and out-baskets, etc. on their "desktops".

5.2.2. Hardware

We initially worked on the Xerox 8010 hardware. Work has been shifted to their new, lower
cost 6085 Professional Computer System which has the following noteworthy characteristics:

a proprietary processor running at 16 MHz. (The so-called "Mesa" processor is based on the
Xerox Mesa Architecture, a processor architecture designed for efficient execution of large
scale modular programming systems. The architecture is also used in Xerox's 8000 and 1100
series processors.)

- 55 -

a 32-bit address space

a 697 x 880 pixel 15 inch display (80 pixels/inch) - (19 inch is optional)

a two button optical mouse

a 10Mb hard disk (20, 40, or 80 Mb disks are optional)

1.152 Mb of main memory (expandable to 3.712 Mb)

Ethernet interface

a retail price of about $5000

5.2.3. The MESA Programming Language

MESA is a highly structured and strongly-typed programming language similar to, but much
more capable than PASCAL. MESA provides mechanisms for concurrent execution of multiple
processes; the mechanisms are similar to those supported by the C programming language. In addi
tion, MESA uses signals to indicate exception conditions. It is our impression that all of the prob
lems inherent in ISO PASCAL have been worked out (eg. no variable length strings, funny evalua
tion of compound booleans, etc.)

It is noteworthy that three of our programmers, one experienced with PASCAL and LISP and
the other two experienced with C, found MESA powerful and flexible. All three were able two
write "useful" code after approximately one week of training. Several of the high-level tools, for
example the form layout tool, facilitated our development of a demonstration system in less than one
and one half person-months.

5.2.4. The PILOT Operating System

The operating system, PILOT, is written entirely in MESA. There is virtual memory manage
ment with process management tools and run-time support for concurrency. While there is support
for multitasking, there is no support for multiple users in XDE. We will have to develop an applica
tion to handle rapid login and logoff - currently, initialization of a ViewPoint desktop requires
approximately 30 seconds. JHH physicians have told us that rapid access to the system is absolutely
necessary, or the physicians will not use the workstations. Issues of file ownership, access and read
write management will require some development work.

In addition, for remote procedure calls Pilot uses the Courier protocol. This may represent a
problem for communication with UNIX machines. At the time of writing, it is believed that the
release of BSD 4.3 UNIX will include support for Courier and SPP. We will also have to integrate
Xerox mail with foreign (UNIX) mail formats.

5.2.5. Development of a Demonstration

Using the Xerox 8010 workstation and the Xerox Development Environment (XDE) , we
developed a demonstration system that implements a subset of the functions developed on the
AT&T UNIX PC. Specifically, the following functions have been fully developed on the Xerox sys
tem and run in XDE:

Laboratory Test Order/Entry -- A simple form is displayed from which laboratory tests
(booleans) can be chosen. To signal a desire to begin the processing of a request the "Order"
command is selected. For feedback to the user, a list of all the chosen tests appear in the
tool's bottom subwindow. The form layout tool helped generate approximately ninety percent
of the code needed to support this application, including automatic generation of pop-up
menus from enumerated types.

Laboratory Results Display -- The status (eg. pending, available, lost?) of various laboratory
test results are displayed in a window. Those results which are available may be selected from
this window and displayed by selecting the "Display Results" command. When test results are
displayed, their names are removed from the status window (see Figure 5); when windows con
taining results are destroyed, test result names are redisplayed in the status window. The
"Destroy" command in the status window destroys the status window only if all result windows

- 56 -

have been destroyed. While the form tool was helpful, we also learned a great deal about the
ease with which one can handle window-to-window communication. In addition, we exercised
some of the low level mouse tracking routines.

Radiology Request/Entry -- A blank requisition form is displayed containing a header of
patient demographics. From the requisition command subwindow, forms to request radiology
tests can be called. Much clinical information must be collected (data input needs are high)
prior to the performing of certain medical studies. The process of developing this application
provided us with insight into approaches that allow context-dependent data collection. We
wish to minimize questioning (prune a tree of questions) by using knowledge already available
to the application (eg. RPC to remote database machine) and by using information collected
at's runtime (eg. if the patient has no allergies to medications, don't ask which medications).
We need tools to support dynamic forms and cascading menus. Xerox provides it all.

We are currently porting this demonstration to run under ViewPoint. The development of our
demonstration has taught us a great deal about the toolset that might facilitate rapid prototyping of
our applications.

5.2.6. The Development Environment

One of the most attractive features of the Xerox workstations is the comprehensive set of
development tools. Xerox adheres to the philosophy that processes exist in a cooperative, not compet
ing, environment. Each process is responsible for acquiring its own resources, and then releasing
them when no longer needed. This cooperative approach has carried over to the set of development
tools that are available. There are hundreds of tools, ranging from primitive routines to an interac
tive form layout tool (that generates MESA code), that can be used to speed the development pro
cess. The form layout tool is an example of a high level development tool that does not limit appli
cation flexibility. MESA code generated by the layout tool may be customized by the applications
programmer. An application programmer can spend his time developing applications rather than
developing the tools he needs for the application.

Following this cooperative philosophy, XDE provides an environment based on fully integrated
tools that encourages rapid software development. The text editor, compiler, binder Oinker), and
source code debugger are tightly coupled so the edit - execution cycle is very fast.

High-level tools and low-level access coupled with powerful debugging tools, a consistent
method for window-to-window and application-to-application communication, and a consistent and
intuitive developer's interface make XDE an attractive development environment.

5.2.7. ViewPoint

As mentioned, while the XDE interface is consistent and flexible, it is not simple enough for
application users. For this reason, Xerox provides tools that allow the development of ViewPoint
applications from within XDE. The ViewPoint architecture is open and flexible. Like XDE, no
assumptions are made about applications that run above it and a philosophy that the user should be
in charge of the window layout at all times is encouraged.

To help support this concept, the developer is provided with tools that allow the construction of
a host of intelligent window types. Terminal emulation for VT-IOO and 3270 is supported. We are
beta-testing a PC emulation board that facilitates the integration of applications available in the
DOS environment. PC emulation can help users in the transition from PC-based systems to worksta
tions. They have the functionality they are familiar with, plus the new capabilities of the worksta
tion. Windows can be in an overlap or tiled mode and there is full support for tiled subwindows.

5.2.8. Summary

XDE provides a very attractive development environment to support the types of applications
we have planned. High-level tools would facilitate rapid prototyping; the low-level access provided
keeps the flexibility of the system high. A nineteen inch monitor is available and provides the same
pixel density (SO/inch). We feel that this screen size and resolution is what our system will require.

- 57 -

Product performance (speed and efficiency) is impressive in the XDE environment. We are in the
process of assessing performance of applications running in ViewPoint. While initially the network
issues (the need to support Courier and SPP) were a major concern, we are anticipating support for
Courier and SPP in the BSD 4.3 UNIX release. All in all, the price/performance ratio for the 6085
is impressive; XDE and ViewPoint provide us with an attractive development environment and user
environment respectively.

5.3. Sun-3 and SunView

We are anticipating the arrival of the Sun-3 and SunView for evaluation. The performance
should be excellent, due in part to the MC68020; the physical characteristics (display size and reso
lution, optical mouse, etc.) are certainly acceptable. The communications environment (IP/TCP
and NFS/XDR/RPC) fit well into our UNIX environment at the Johns Hopkins Hospital.

We need SunView to determine how well the Sun-3 will meet our development environment
and user interface criteria. The documentation provided to us indicates considerable improvements
over the earlier SunWindows tools.

5.4. Other Candidates

We continue to evaluate other workstations. We are talking with Apollo Computer, Inc. about
present and future DOMAIN systems. We find their very highly distributed network attractive.
IBM has met with us. However, they feel that at this time they cannot satisfy our
price/performance requirements. Another major firm, under a non-disclosure agreement, is discuss
ing with us a future workstation/system that may meet most of our needs.

6. Plans

The development plan for clinical workstations is organized into several phases:

candidate product selection; identification of minimum hardware and software capabilities;
establishment of vendor relationships for information and support;

development of a "demonstration" CWS. This was done to provide a concrete example of what
we are trying to accomplish so that user involvement could progress. A team of programmers,
physicians, nurses and other personnel was formed to define specifically the requirements for
physician, nurse and ward clerk workstation capabilities. A "pilot" CWS capability was base
lined and a set of objectives to be accomplished over a longer term were identified. The
demonstration system was built initially on the AT&T UNIX PC; enhanced demonstration
systems were built on the Xerox Star under the XDE/MESA environment and begun on the
Sun 2/120 under the UNIX operating system using various tools provided by Sun;

development of a Upilot" system. This system is for actual use on a pilot clinical unit for the
purposes of evaluation and validation of requirements. It is designed to implement the baseline
capabilities which include integration with other hospital systems, these capabilities are a use
ful subset of the functions listed in the Introduction. An operational pilot is planned for second
quarter 1986;

proliferation of a modified "pilot". Based on the evaluation, an enhanced and modified pilot
system will be proliferated to other clinical wards for a wider range of feedback. Requirements
for additional functionality will be determined and a "target" system will be developed. This
work will occur during CY 1986.

development and full proliferation of "target" system. The system will be expanded to all clin
ical wards (there are approximately 50) in the hospital.

7. Summary

Design criteria for the JHH inpatient system architecture and for the associated clinical
workstations have been discussed. This system is currently under development and examples of the
user interface on the potential workstations have been prototyped. Workstations will be deployed on
clinical wards after pilot evaluation at selected sites. These will be networked with a

- 58 -

superminicomputer for database redundancy, support of functions not requiring workstation technol
ogy and cpu-intensive tasks. The supermini and workstations will be connected to the JHH Ethernet.
Workstations will have connectivity with other networked computers, printers and specialized
servers.

8. Acknowledgements

We wish to acknowledge the information and assistance provided by the following vendors:
AT&T Information Systems, Xerox Corporation and Sun Microsystems, Inc.

9. Trademarks

UNIX is a trademark of AT&T Bell Laboratories
UNIX PC is a trademark of AT&T Information Systems
Ethernet, XNS, SPP, Courier, XDE, MESA, Star, 8010, 6085 and ViewPoint are trademarks of
the Xerox Corporation
INGRES is a trademark of Relational Technology, Inc.
98x is a trademark of Pyramid Technology Corporation
VT-I00 is a trademark of Digital Equipment Corporation
3270 and 3278 are trademarks of the IBM Corporation
MASSCOMP is a trademark of Massachusetts Computer Corp.
DOMAIN is a trademark of Apollo Computer Inc.
Sun-2, Sun-3, Sun Workstation, SunWindows and SunView are trademarks of Sun Microsystems,
Inc.

10. References

E. S. Bergan, et aI., "Using Remote Procedure Call Protocols for a Distributed Clinical Information
System", Proceedings of UNIFORUM, February 1986

B.1. Blum, "Information Systems at the Johns Hopkins Hospital", Johns Hopkins APL Technical
Digest vA, n.2, 1983.

D. P. Connelly, et. aI., "Graphical Representation of Clinical Laboratory Data", Third Annual Sym
posium on Computer Applications in Medical Care, 1980.

R. S. Johannes, S. N. Kahane, B. Ravich, and H. P. Roth, "The Use of Voice and Graphics in an
Endoscopy Data Collection System" Proceedings of the Voice I/O Systems Application Conference,
September 1985.

P. E. Polister, "Intelligent Display of Laboratory Data", Eighth Annual Symposium on Computer
Applications in Medical Care, pp 402-405, November 1984.

D. J. Streveler and P. B. Harrison, "Judging Visual Displays of Clinical Information", MD Comput
ing, v.2, no.2, pp27-50, 1985.

S.G. Tolchin, et. aI., "Overview of An Architectural Approach to the development of the Johns Hop
kins Hospital Distributed Clinical Information System", Hawaii International Conference on System
Sciences, January, 1986.

S.G. Tolchin, et. aI., "Integrating Heterogeneous Systems Using Local Network Technologies and
Remote Procedure Call Protocols", Ninth Annual Symposium on Computer Applications in Medical
Care, November, 1985.

S. G. Tolchin and W. Barta, "The Johns Hopkins Hospital Network Hawaii International Confer
ence on System Sciences, January 1986

Admit' Pre·Admit -+ ~ Appt. Requests,

eATD e Admit Planner Orders

eOutreach elnpatient Care Mgmt

eScheduling ~ lab. Pathology,

Direct Physician -+ e Orders' Requests
Radiology Reports

Access .- eResults ~ Pharmacy Profile I
Orders

e Concurrent Review

On·line History -+
• Abstraction & Coding

long Term • Discharge Reports & -+ Charge
Database Outpatient Interface Transactions

U1
\0

Networlc ofworlcstations
andhoJts

Nursing Unit Workstations

Super
minicomputer

OCS
Office

Terminals

Terminals. AT&T UNIX PC
Xerox Stan, 6085 workstations
SUN workstations

Neuro·Radlology

Figure 1: Johns Hopkins Ethernet Network Figure 2: Architecture of the Johns Hopkins
Distributed Inpatient System

III"II"
* 01"

; l CYOOlSIlI1

; PUlCnI Mac: JcNt. ""'
,Ila ~: 81S J:J J:J
;OU. : Jul, '. 1S'51''- :~:GIt

. ,"_. *'"9'G1

jPr9taill.;» "i'1l1 It· 31 liM

I "OqlMOIS os a- 01 91-
I--c ... gllCOM' ~ en 7Wll!lIlIl&:11

:I t7 tfJIlIO.Cg

IPa\lGlC IIoa , Jorwt.~
:110 ~: Ii~ n)J

. f~~::'5~.j I. 1m

f. ~:·Il"" ~ llnCI'ip.1en Ale

I 1 a_
. , I. Clear

le-c.: IIlna

~ R,s1o:1aa: r"lIl. r.
llllIJ.I=hJ RytldM: 'UtlCft•••

Via TClaJ'. a ...tr:al CloUI
Vic9 a..Jllhe llota.
Via &Iou If D'-~hl

lI=crGJ!

Figure 5: Xerox 8010 Screen After Selecting "View Today's Clinical Data"
and Each of the Available Results

i

I
,,"Wl: (JcN-o. J.)
IlIID: ",unCD:., =. U&7ISa: ..,.

1

...;lIIl1c.

e-r&Agt: s.J

"'-~Stod1!i Ibf.cu llIdioloIT SCulf.
,~CmMC&llozt!

IStuul
:JOG
:IUD
'JOG

I
I . i C9 CTTG'.llQ.llGrr.-------------------<l . ·lhllGll ... : JO"eI. J(ft'j

'111111 ° liS D 1J
illota:·~ •• 1B
lIla: •.

o· l!!pl:-: 2« 01 cl_ nvLa

!!Ivculen : lb IlnlroII grllt ICm
I

TUB "ov 26. 9:85 a.

111l1li

Request Radiology Study

1. Rejuest Labor~

ctW"!IlU4i.:fttim •
3. Request Consultation
4. VieN Today's Clinical Data
5. Uiew Cuaulative Clinical Data
6. UieN Patient Schedule
7a. Hedical Infor.ation - Drugs
... u • ..,. • • A.

HO: uta. en y
questing Physician: Dr. Jones

Patient is pregnant
Patient's LMP is unknown

Figure 3: AT&T 7300 Screen After Login

l'I'lllIllI'I!'liilill'!!!I!!I'!!IlfEJl~IIII!1, . I iiliilrllliiililiol'lllll;

I
, 11"li!!i:illl!lIIHIiIl!!11 .Ii!

1. Reguest Laborator~est '11,'llllIIIIIII'I'llillilllHl' 1IIIl
• __aMUiiQW:matli.Gi I 1.ll'liil"II.I'jl"'I',II·1 'I--- .------- - I '.: "'1111 II' U!I·h. I ,

~: ~:~e~~d~:~:u~~i~f~~ Data '11"liliillllllllilillllllllllllllll'j'il
5. UieN Cu.ulative Clinical Data I 1II'j','II,llr'ill"'III,II1/11II'lllll/111 II
6. UiON Pationt Schedulo • uliillll!'l ll!hhllhh! II'
~b: ::~f~:lI~~~~::U:~ : ~i~::ses III !ll!il!!llll!ii.l1mml!r11ll111111
7c. Medical Infol'ution - Literature Search 1'I·lIiilli!liillllHlwm.111 11111l1j,ll'

111

11II1!!!I'!IIIllIl!hl!l! 1111'
Ba. Decision Support Tools - Calculationc i 1l!i!I!H!li!UhliilHIIII !i!!l
8b. Decision Support Tools - DifferentJal Diagnosis I 11!:jl!m'i1dlliiiill!l 1111'4"1
9 P ·b M d· • I /I·!,I.I'IIIII::.·'.....III .11• rescr1 e e 1cat10n !I' !lilhld i1!ii'i!lIih II'

'

1/1jllil..I'lll.l;i!'I·/i' II

I
II ~1:hm!!I!,I,IIH!!.!I!I' Ii

!' 1"u,!!,I.p;.f:!:l!!'!!'I. III
":11:.11"::;:;:;:':"':"":""""::::::;::':;:::'::'''::'1'''''''11'1:''1"...... IlI ·llll1.. '.I.' '1"'III,uiI'illl"lllllll"'''!llllli!'iiilll'I'lllli'"lllilll'llIiiii!lH!HHmiiHllill.!m/!ii!i!I!!il:Hii!HlHliililil!l!ll!IlI' l'111!'!lHHlii'l 1111 h'lll'll i II Ilj!!;;ili!! IlHil!ilil ! :.!ii!!!! ·,Hill II I' I
j.!!!ii:l!li!!!!!!!ii!l·' il!!!l!Ii!i!!'!ihlliHiiililjl!lIii.iiilltH II IIlili!liliilll' I. ,Ii". 1I'/I!I!!II!il!lII Hlli!!HI!!i ,I 11'1!I'lj'illll Illli'IlII' IIIII!HlililliHHliji!!I,iiliiimli!H !!iHHllllHHd!lliiiliitUlil"1 ! ,lilli/WI': II 11!!!'I!I'llli,l Illiiil!I:IUollli'IIIH!!liiili'!I11 .,' ii'lmll'll l'lii,' IIi I,
'HIiUi!U!!!!I!!in!I'lfftl!'J!!!lllllli!!!!!!!!U!'J!111Ip!UHI IlllUUIU-: 11111111 I I t I II nUll II !I!!!:!!!!!!I" t:!.I:Ht!!! '!!.!!! :111, 1"1
!!ill!!iiHl!ii!i!jllill'!'h!!!I!id,!I,!IHii!H!!lil!I!t.. il~iilhlII:! lil!!l!!l!l!!lll:l!llilillllill I !IHhmlhm!i!!!HHlI!l !I ,'!!l!miH!!!l!lml!H.! l'I,IllI.

ImiilillWli!iiillllll!lillllll!!lil!III!lmlliilll!lllllllil!i!I\!i!liiillllmmmIOillil!lillllll!,!!liI!!!!II!I!il!IIII!I!\llll,'! 111!!II!I!lllIllilllill!lllllllillllllllllll
!iiiiii:!iii!!iiiii!lIilliii!!!i!H!!!!!lllii!;iHiiil!illili!lii'!;lillih!lilli!gguii liiihi!liimlili!!!Hmitl!ihhii!!iiliH.1 1l1!1!!!!I!iIlUUiiili!i!h! !ili!!1

WIIIN••mll DATA 2
~. CNS-PhY8ician

Figure 4: AT&T 7300 Screen After Selecting
"Request Radiology Study"

·61 .

JHH CLINICAL WORKSTATION CRITERIA

Issue Comments

PRICE workstation units
I~ser printer
options (eg. disks, PC emulation, etc.)

PERFORMANCE acceptable CWS demonstration
architectural design (quality, open, distributed, etc.)
results from running a selection of benchmarks

COMMUNICATION with other workstations, minis, JHH ethernet
electronic mail capability
with UNIX machines (uucp capability)
remote access to workstations
via telephone

USER INTERFACE display size, resolution
windows (multi, scrollable, movable, sizable>
icons, pop-up menus, pointing devices
ability to customize display <interface flexibility)
context driven data capture and display
emulation of terminals (VT-JOO, 3278)
emulation of IBM-PC on the workstation
support of crts hung off workstation
support of remote crts

DEVELOPMENT ENVIRONMENT array of tools for software development
• editlcompilehestldebug tools
• high level software design tools
• tools for development of charting & graphing functions

data base support
source code availability or comprehensive documentation
ability to interface with window manager, pointer, applications
future maintenance issues
training (of the developers) required
how much background processing can be done
effort required to create a 'foolproof user environment
ability to use standard. security system
tools for adhoc charting & graphing
ability to send screen-print to network printer
local data management
artificial intelligence support (j.e. LISP)

PHYSICAL CHARACTERISTICS reliability
ruggedness
ease of unit replacement
power required, quietness, size

MISCELLANEOUS solid vendor with good field support, reputation & finances
product family future plans
availability of sister workstations (gray scale, color)

Table 1: Workstation Issues

The Feel of Pi

T.A. Cargill
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

Pi is an interactive debugger for C and C+ + on Eighth Edition Unixt sys
tems. Its user interface uses multiple windows on a DMD 5620 terminal. Pi does
not feel like a debugger with a sequential command language, nor does it feel like
a debugger where commands from a bitmap display are translated into a sequen
tial command language. In contrast, Pi's multiple windows display multiple active
views of its multiple subject processes, allowing the programmer to browse
through a network of information. The programmer interactively wanders
through a set of executing processes, probing for insight with a tool that really
helps.

Each window displays a specific view of a subject process in parallel with the
other windows. The contents of pop-up menus are determined by context - the
current window and the line of text selected within it.

Pi is written in C+ + and uses Eighth Edition's Ipro(' to access arbitrary live
subject processes.

Introduction

Pi (Process Inspector) is an experiment in debugging with an interactive, bitmap graphics
user interface. The debugging technology is conventional: breakpoints are planted in the subject
process so that the states the process moves through may be examined. But the user interface is
unconventional.

In a conventional debugger, the programmer inputs a sequence of commands that are inter
preted by the debugger. The debugger responds with information about the subject process.
Several problems arise. First, the debugger can usually accept only the subset of its commands
applicable to the debugger's current state. For example, breakpoints can only be set in the current
source file, or expressions can only be evaluated in the current activation record. Second, the
debugger's output is passive and cannot be used to obtain further information about, or other views
of, the process. For example, if a value is displayed by some command in an inappropriate for
mat, the programmer must re-issue the command, specifying another format, or take the value and
manipulate it elsewhere. The effect is that any non-trivial debugging is accomplished by combining
the debugger with some of our oldest tools - pencil and paper. Third, a debugging command
language must necessarily be very large, if it is to be useful. Generally, keyboard languages are
complicated, and often cryptic.

The goal in writing Pi was to create a full-function interactive debugger with a good user
interface: menu-driven, reactive, usable without a scratch pad or reference manual.

t Unix is a trademark uf AT&T Bell Laburaturies.

- 63 -

Interface Model

Pi's user interface assigns each view of a subject process to a separate window. Each window
has its own menu of operations, appropriate to the view presented. Within each window are lines
of text providing details of the window's view. Each line has its own menu of operations,
appropriate to the information presented. Interaction is driven by the programmer selecting opera
tions from these menus. In response to each operation, the debugger adds or removes windows, or
lines, or their menus. A window or line may also choose to accept a line of input from the key
board.

On the DMD 5620, a layer is subdivided into a set of scrolling, overlapping windows. The
mechanics of the user interface are derived from Jim, a text editor by PikeI2,41. There is a current
window (with a heavy border), and within it a current line (video-inverted). Each button on the
three-button mouse serves a specific role. Button number I is for pointing. If the cursor is outside
the current window, button I selects a new current window. If the cursor is inside and over a line
of text, that line becomcs current. If inside and in the scroll zone, the window scrolls to center the
proportional scroll bar over the cursor. Buttons 2 and 3 raise the pop-up menus for the current
line and window, respectively. Menus also scroll and may have pop-up sub-menus, making large
menus relatively easy to use.

An Example

I will demonstrate Pi by examining the copy of Jim that I am using to writc this paper. Jim
is two processes, one in the host computer and one in the terminal. I will work with its host pro
cess. I create a new layer on my 5620's screen and simply invoke Pi:

pi

After about 20K bytes of user interface code has downloaded into the 5620, Pi's cursor icon
requests me to sweep a rectangle for a new window - the "Pitt window, the master window
through which Pi may be bound dynamically to processes and core dumps. I now have one (almost
empty) window in Pi's layer:

------------------I/bin/ps a "'
pi =3.141592 /bin/ps x

kernel pi

Selecting '/bin/ps' from this window's menu runs the ps command and lists the output in the
window, one process per line:

/proC/10887 dk14 I 9:35 mux I
liroc/10897 pt02 5 0:20 svsmon '-1 • •

I • I • I take over "'/proc/10949 pt12 I 3:19 pi open child
/proc/11145 pt12 R 0:01 /bin/ps NNNNNNNNNtWfWN

cut
sever

It shows me with a light load - I am only editing. To examine Jim, I point to process 10918 in
this list and select 'open process' from its menu. I am now requested to sweep a "Process"
window. The Process window has overall control of the process and can create windows with more
detailed views. The process window shows the state of the process, and a callstack if the process is
stopped. The statc of process 10918 is:

Process: /proc/10918
RUNNING: 3.6u 2.5s pc=read()+4

- 64-

This is usual state for Jim's host process - it is blocked reading from the terminal. Pi polls the
state of the process every second and updates the Process window asynchronously with respect to
the user and the subject process. After some more editing the consumed processor time has
increased.. I raise the Process window's menu:

run
/proc/l09l8 StOD -Process:

RUNNING: 4.Su 2.8s pc:read()+4
Globals "'

RawMemory
Assembler -Signals

kill?
Journal

'stop' stops the process asynchronously. 'run' restarts it. 'src text' creates windows for view
ing source text. 'Globals' creates a window for evaluating expressions in global scope.
'RawMemory' creates a "memory editor," in which uninterpreted memory cells may be viewed and
modified. 'Assembler' creates a window that disassembles memory and provides instruction level
operations. 'Signals' creates a window that monitors signals to the process. 'kill?' kills the
process; the question mark calls for a confirming button hit. 'Journal' creates a window that
records significant events in the process - a trace.

First, I choose to look at some source text. If there were a single source file, 'src text'
would create a "Source Text" window for it. Jim has several source files; so Pi asks me to sweep
a "Source Files" window that lists them:

IProcess: /proc/l09l8 SOurce Files: /proc/l09l8RUNNING: i:I.Su 2.8s pc: alloc.c
file.c
gcalloc.c . •jim.c INNNNNNNNNNNNN__- "mSQs.c cut.
string.c I

sever
truncate

•
I point to pattern. c and choose 'open source file' from its menu. I sweep a Source Text
window. It fills with the first few lines of pattern. c. I raise its menu:

SOurce Text: pattern.c
#include IIjim.h ll run
#include IIfile.h ll current stmt

step 1 stmt
#define PATSIZ 128 step 2 stmts

step 3 stmts
char pattern[PATSIZ], .patp; step 4 stmts
short this; step >4 stmts-
short searching; /. we need only step into fcn •

~~NNNNNNNNNN~NNN f'
reshape

II have not looked at this code before starting to write this example. I believe I will find Jim's reg
ular expression pattern matcher here. I know no details of its implementation. It is as if I were
starting from scratch to find a bug in Pike's code. I

- 65 -

Moving the cursor over the arrow at the right of 'index by fcn' pops up a sub-menu that is a
table of contents by function (with line number) of pattern. c:

execute() Q10
expr() 205
fexecute() Q20
killlater() 699
new() 375
newmatch() 656
old() 387
o timize 96

cut
sever
fold

(char

It suggests, as I expected, that Jim compiles regular expressions into a representation from which
they can be interpreted efficiently. To see some of this code, I select 'compile () 79'.
This scrolls the window so that the line with the opening brace of compile () is in the center:

int nmatch;
-char -compilepat;

compile(s, save) trace on ~
char -s: cond bpt111 111 11111•••••••.- assembler
if(strlen(s»=PATSIZ) open frame

error(llpattern too long\n" ,
forward=1;
startpat(compilepat=s);
expr();

To set a breakpoint, I point to a line of source text, say the opening brace, and select 'set bpt'
from its menu. To indicate the breakpoint, '»>' appears at the beginning of the source line:

int nmatch;
-char -compilepat;

compile(s, save)
char -s;

if(strlen(s»=PATSIZ)
error(llpattern too long\n ll

, (char -)0);
forward=1;
startpat(compilepat=s);
expr();

Note that the breakpoint was set while Jim executed asynchronously.

To force Jim to execute the breakpoint, I type (in Jim's layer) a search command whose pat
tern matches a non-empty sequence of 'a' followed by a non-empty sequence of 'b': /a+b+.

- 66-

When Jim hits the breakpoint, Pi asynchronously notices its change of state and reports it in the
Process window, along with as much of the callstack as fits (here, only the deepest activation
record):

Process: Iproc/10918
BREAKPOINT:

pattern.c:19 complle(s=oxOOO9=lIa+b+ II ,save=1)

In the Source Text window, the breakpoint source line is selected to show the current context. To
see more of the callstack I reshape the Process window, making it larger:

Process: Iproc/10918 10Den commands(l frame
BREAKPOINT:

12attern. c: 19 comDlle(s=OxDOO9=1I a+b+ 1I •savJ N ~~; N "

I~ sever
]im.c:206 message() I fold
jim.c:100+1 main(argc=0,argv=ox1FFFESSC) I

To see the context from which compile () was called, I select the commands (f=OxBCAC) line
from the callstack and choose 'show jim. c: 368' from its menu. I am prompted to sweep
another Source Text window, jim. c, to see th is context. To catch the process before it calls
execute (), I change the selection from the line

compile(p, TRUE);

to the if statement four lines below and set a breakpoint:

-

break;
case '1':
case' I':

if(...-+p)
compile(p, TRUE);

else
dprintf(lI%cts\n ll

, c, pattern);
send(O. O_SEARCH. O. o. (char -)0):

moveto(f, 10c1, 10c2);

I

trace on "
cond bpt
assembler

open frame

cut
sever
fold

I

I then 'run' from the Source Text window's menu:
dprintf(lI%c%s\n ll

, c, pattern);
send(O, O_SEARCH, 0, 0, (char -)0);

»> if(execute(f, searchdir=c»
moveto(f, 10C1, 10c2);

When Jim reaches this breakpoint, I choose 'step into fcn' from the same menu to step
the process into execute (). (The other source stepping commands step over called functions.)
The source context for execute () is back in the first source file, pattern. c.

- 67 -

reshape
move

close

run
current stmt

step 2 stmts
step 3 stmts
step iI stmts
step)iI stmts
step into fcn
index by fcn

if(mustcompile)
compile(pattern, TRUE);

if(c='/')
return fexecute(f);

else

}
execute(f, c)

File -f;
int C'

Pattern. c's Source Text window moves to the front of the screen and highlights the opening
brace of execute ():

It appears that the real work will be done by fexecute (). I could set a breakpoint there, but I
use ' step 1 stmt' from the source window's menu a few times until I get to:

return fexecute(f);

and then use 'step into fen' again. The context shown from pattern.c changes:

return bexecute(f);

-

}
fexecute(f)
I relister File .f t•••••••••••1register Node -n;

register long startposn=f-)selloc+f-)nsel;
long l=length(f);
register flag;
register char -s;

fexecute () looks non-trivial. Before going further. I would like to understand the data
structure driving it. I do not know what this data structure is. Looking forward through the
source text of fexecute () I understand very little of the code. But three lines do make sense:

1* fast check for first char *1
if(startchar && *sl=startchar)

goto Continue;

Surely. startchar holds a literal character and s is a pointer into a scanned string. To test this I
set a breakpoint on the if and 'run'. At the breakpoint I need the value of startchar. Choos
ing 'open frame' from the source line's menu:

-
/- fast check for first char -,

goto Continue;
}
if(flag){

nl=list[1] ;
tl=list[D] ;

•clear bpt
assembler
•
N"'#VtvI'V,.,,.,NNN "

cut
sever
fold

- 68 -

on
on

startposn
s
wrapped
reg1sters

hex on
attern.c:~61 unsd dec on
mBIII_._.I1I1I11.IIII.~li sign dec off

octal on

creates a "Frame" window for the activation record of the function corresponding to the source
line. A Frame window evaluates expres~ions with respect to its activation record. The menu con
tains local variables, each flagged as an argument, an automatic or a register:

pattern.c:~61 fexecute(f=OxBCAC): ~lag ~~~
1 aut
lastwasnl aut
1 aut
n re

Is that an 'a',! The value is in decimal because startchar is declared into To override the
default format, I select 'format' from the expression's menu, and 'ascii on' from the sub
menu. The expression re-displays itself:

pattern.c:461 fexecute(f=OxBCAC):
startchar='a'=97

The value of startchar looks right and probably came from the data structure I am after.
Scrolling back a few lines in pattern. c I find an assignment to startchar:

nmatch=O;
match[O].b=OX7FFFFFFF;
match[O].e=Ox7FFFFFFF;
startchar=O;
1f(fstart->op<0200)

startchar=fstart->op;
~ 1=Fseek(f, startp)-1;

if(1<0 II f->str.s[i]=='\n')
lastwasnl=TRUE;

Restart:

fstart may be the pointer I need, but it does not appear in fexecute ()'s menu. It must be a
global. Rather than open the global expression evaluator window and look in its menu, I enter the
expression

fstart

from the keyboard, with fexecute ()'s Frame window selected as the target.

- 69-

••
cast

sizeof $
- $

$ []
$->

$->left
$->op
$->right

format

pattern.c:461 fexecute(f=OxBCAC):
startchar='a'=9?

I I

The Frame window now contains two expressions:
r-----~

•What type is fstart? I can almost tell from its menu. Most of thc entries in an expression's
menu are new exprcssions that may be derived from it. Thc $-> 's tell me that I have a pointer to
a structurc. (In the menu, and from the keyboard, $ denotes the current expression.) Choosing
'typeof $' confirms it:

Choosing '$->left', followed by '$->op', and '$->right' yields:

startchar='a'=9?
fstart=Ox?1CO
typeof(fstart): -struct Node
fstart->ri ht=Ox?1CC

•
fstart->left=O

Reformatting fstart->op in ASCII leaves:

I
t eof fstart ; -struct Node

fstart->op='a'=9?
fstart->left=O

So here is some kind of tree, whcre an operator code less than octal 200 is to match its own value
in the scanned text. The left sub-tree is cmpty; the right looks promising. Dereferencing with
·* $' yields:

format
-fstart->right={op='\202'=130,left=ox?1CO,right=Ox?1D8}
fstart->op='a'=9?
fstart->left=O

- 70 -

The left field of fstart->right is equal to fstart itself; maybe this is a doubly-linked list.
Applying '$->right' to fstart->right, I get:

fstart=Ox?1CO
typeof(fstart): .struct Node
fstart->ri ht=Ox?1CC

fstart->op='a'=9?
fstart->left=O

I already know this, but applying '*

pattern.c:461 fexecute(f=OxBCAC):
startchar='a'=9?
fstart=Ox?1CO
typeof(fstart): .struct Node
fstart->right=Ox?1CC
fstart->r1~t->ri~?1D8'.'i'iH"lAd••JmiEi.m.,ii.-.""'.$':'I.m.d"I.EI~I:W'III!'lII•••nldIPl!lEl.a'lI.III:II.1'I'1IlI'Il:'II'·.-
fstart->op='a'=9?
fstart->left=O

Process: /proC/1
BREAKPOINT:

pattern)nil
\ ,

)arrern) ;
:har .)0);
t)

startchar=o;
if(fstart->op<0200)

startchar=fstart->op;
i=Fseek(f, startp)-1;
if(i<O II f->str.s[i]=='\n')

lastwasnl=TRUE;
Restart:

pattern.c:461 fe
pattern. c: 414+10
jim.c:3?2+22 com
jim.c:206 F!0CC:ltl

jim. c: 100+;

I
J.1.m. \;
msgs.c
pattern.c
string.c

Note that the value of the op field for the current expression is displayed in ASCII as 'b'. The
ASCII format explicitly requested for that field earlier was saved in the symbol table and is now
the default. The left pointer is zero here. It now looks as though left points back to the
beginning of the sub-pattern controlled by the closure operator.

Let me stop here. I have started to unravel the data structure and understand the program.
I hope this paper description conveys something of the feel of Pi.

Programmer Reaction

Most programmers take somewhere from a few hours to a few days to make the transition
from drowning in a sea of windows to considering Pi an indispensable tool. At the outset, they do
not expect dynamic binding to subject processes and cannot see why there are so many windows.
Invoking a debugger without specifying a dump or program is a foreign notion. Expectations of a
debugger are very low: "I only want the value of x when fO is called - why all the windows'?"
With increased confidence and ambition they use Pi with more sophistication. Styles vary consid
erably. Each programmer uses idiosyncratic sizes, shapes and placements of windows, especially
when debugging multiple processes. Some prefer to enter most of their expressions from the key
board, others never touch it.

There are two main problems. First, binding Pi to subject processes is too complicated for
novices. Experts demand many special facilities, which have been allowed to complicate what the
novice encounters. Second, demand for programmable debugging is growing among the expert
users. Programmability was excluded from Pi in order to concentrate on interactive behavior. Pi
doe~ have "spy" expressions, which re-display themselves if their values change, and conditional
breakpoints, but it is not programmable, say, to step 10 instructions after encountering a break
point. It is now time to think about how programmability and interaction can be combined.

- 71 -

Asynchronous Multiple Processes

An arbitrary set of processes may be examined simultaneously. For each subject process
there is an independent network of windows. Since all the windows are in a flat space on the
screen, each successive action from the programmer may be in an any window, associated with an
any process. Events in the set of subject processes are reported as they occur. For example, the
programmer might step source statements alternately between a pair of processes while watching
the changing values of spy expressions in a third process. This simplifies debugging situations that
were difficult or impossible in the past. For example, it becomes straightforward to (i) compare
the behavior of two similar programs; (ii) compare the effects of different inputs on a single pro
gram; (iii) observe the interaction between related processes, say child and parent.

Implementation

Pi depends on the Eighth Edition's Iproc[I ,4], and object-oriented programming in C+ + (3].

Iproc permits Pi to bind itself dynamically to any processes, and execute asynchronously with
them. For each process, Pi can tell the kernel how to handle an exec() by the process and signals
received from other processes. A breakpoint in code executed by a child of a subject process
suspends the child so that it may be opened and examined. Code sharing is managed transparently
by Iproc.

The browsing and asynchrony are driven by object-oriented programming in C+ +. A large
host C+ + program communicates with a small 5620 C program. Everything the programmer can
identify on the screen is a C++ object, an instance of a class. The host program binds an object
identifier (which can be thought of as a host address) and a menu of operations to each window
and each line of text as it describes them to the terminal. When the programmer selects an opera
tion from a menu associated with an object's image, the terminal sends back a remote invocation of
one of the object's member functions. Generally, executing this function creates, changes or
removes host objects and their images in the terminal. Host-terminal communication is asynchro
nous; the programmer need not wait for results to appear on the screen before issuing another
operation. There is no ambiguity in this "mouse-ahead"; the identity of the object on which a
menu operates is frozen when the menu is raised. A crude object registration scheme in the host
detects (with high probability) and ignores operations for objects that have been destroyed.

Conclusion

Pi's easy access to information about arbitrary processes has made programmers more sophis
ticated in their debugging practices. Programmers working with large programs written by others
are happier. Programmers who would not normally read assembly code can sometimes spot code
generation bugs in the compiler. Programmers with families of interacting processes have a handle
on them. In general, programmers understand their programs better.

References

l. T. Killian, "Processes as Files in Eighth Edition Unix," Proceedings of the Summer 1984
USENIX Conference, Salt Lake City, Utah

2. R. Pike, "The Blit: A Multiplexed Graphics Terminal," AT&T Bell Laboratories Technical
Journal, Computing Science and Systems, October 1984

3. B. Stroustrup, "The C++ Programming Language," Addison-Wesley, 1985

4. Unix Time-Sharing System Programmer's Manual, Eighth Edition, Volume I, AT&T Bell
Laboratories, February 1985

Flamingo: Object-Oriented Abstractions for User Interface
Management

Edward T. Smith and David B. Anderson

Carnegie-Mellon University

ABSTRACT

This paper describes the Flamingo User Interface System designed for use by
programs running on Spice machines. Flamingo is designed to use the remote pro
cedure call mechanism available through the various operating systems running on
Spice machines to provide a flexible, robust, machine-independent interface to a
variety of different machines communicating over local area networks.

Flamingo separates the abstractions of the objects used by the program to
communicate with the user from the actual devices used to read or write informa
tion. A window manager is provided that makes a suitable mapping from output
objects known to the program to those objects seen by the user. A user interface is
provided to map input events from real devices to either window management rou
tines or to a form suitable for input by a program.

Flamingo itself can be divided into different processes running on different
machines each implementing different parts of the system. All exported objects
used for communicating between users and programs are implemented with specific
methods defining the operations available for those objects. New methods can be
substituted for the standard ones either for an instance of a particular object or for
all objects of a class in a given running Flamingo system. These mechanisms pro
vide a flexible framework within which a variety of window managers and user
interfaces can be realized and evaluated.

1. Goals

Flamingo (FLexible, Asynchronous Manager for Interactive Network Graphics Operations) is
a system for building user interfaces to programs running within the Spice environment. The Spice
environment1 consists of a heterogeneous set of machines, typically large personal workstations (and
a few mainframes, file servers, supercomputers, etc,), each of which supports the IPC 2 (inter
process communication) message passing model. This mechanism provides a transparent, language
and machine independent means of communication between programs and all system resources they
may need (screens, keyboards, pointing devices, file systems, other processes, and so on). A basic
goal of the Flamingo effort is the creation of a system that can take advantage of this common
message-passing mechanism to provide a powerful, flexible interface between programs running in
the Spice environment and the human user on some Spice workstation.

A part of this goal is to address the issue of providing upward compatible user interface

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory Under Contract F3361 5-84-K-1 520.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

- 73 -

support to all our older software. The Spice environment currently consists of about two hundred
machines representing several manufacturers. There is a large and growing base of software written
on all these machines that complicates the ability to port software as new machines appear. Often
in fact, some software is simply not suitable to port, since some special machine may still perform a
service that other machines are not capable of performing. Thus, Flamingo should allow users to sit
at any Spice machine and run programs on any other Spice machine, despite differences in the
underlying input and output mechanisms of the machines being used.

A final goal, and one that has guided much of our design, has been to simplify the task of
implementing and modifying user interfaces and window managers. As we surveyed the needs of
the researchers in our group, we found our clients (including ourselves) wanting to be able to
approach a display manager at many different levels, and to modify or replace components of the
system without being required to deal with the complexity of the entire system. Our researchers
need to take advantage of the Spice environment's powerful workstations, message-passing operating
system, distributed file system, and large software base, but have been unable to easily modify and
extend the existing user interface system to suit their particular needs. In general, buying into any
particular window manager also means getting a particular style of human/computer interaction and
a particular program-to-window-manager interface. We see our problem as one of wanting to define
just exactly those interfaces for our various systems in such a way to support our researchers more
than supporting some particular style of interaction. No particular style or set of operations has
proven itself capable of answering all the desires of its users in this respect, so we set out to work on
this problem for users of the Spice environment.

2. Object-Oriented Graphics Structures

The current implementation of Flamingo is written in C under Berkeley UNIX· 4.2 running
on a MICROVAX.t Our version of this Unix, called Mach 3,4 , has been modified at CMU to
fully support the IPC mechanism in use between existing Spice machines.

To meet the criteria mentioned above, we have adopted a hierarchical, object-oriented design.
The Flamingo system exports various objects related to input and output of information between the
client program and the user. For input, the primary object is the input device, which includes input
device state information plus methods for handling input events. For output (by client programs),
the exported object is a pixel array. A pixel array (PA) is a 2-dimensional region with a shape
defined by a mask (defined shortly), and a list of mappings, which map the pixel array to other
PAs, to memory, or to the screen. Several classes of pixel arrays are provided; lower levels of the
system export pixel arrays (PAs) with implementations of methods for raster operations, character
drawing, and so on, while higher levels export these operations as well as window managements
functions, input hooks, etc.

An object defined for use by both input and output objects is a mask. Masks are used
throughout Flamingo wherever there is a need to represent shape: the shapes of pixel arrays, mouse
sensitive areas, clipping regions, and the uncovered portions of overlapped windows are all
represented with masks.

Each of Flamingo's graphics operations takes one or more masks as input to specify the clip
ping that is to be performed to the source and destination arguments. For example, our bitblt
operation, which we call rasterop, has this signature:

maskJasterop(srcPA, srcMask, sx, sy, x, y, dstPA, dstMask, dx, dy, op)

The source bits for this operation are those bits contained within the shape specified by the

• UNIX is a trademark of AT&T Bell Laboratories.
t MICROVAX is a trademark of Digital Equipment Corporation.

- 74 -

source mask when it is mapped to the location (sx, sy) within the source pixel array. The destina
tion bits are determined in an analogous fashion, and the source bits are mapped to the location (x,
y) within the space of the destination pixel array, where the raster operation op is performed. (One
might think of the source and destination masks as 2-dimensional bitmaps that are logically ANDed
into the source and destination pixel arrays, where the ones in the masks denote those bits in the
source and destination that participate in the operation.)

Masks are represented internally as a list of rectangles, organized by scanline. This represen
tation permits a compact encoding of the shapes which typically arise from overlapping rectangular
windows, and also allows efficient coding of the methods for masks that we have found useful: inter
section, union, difference, and the conversion of a mask to a list of rectangles. The latter is very
useful: most raster graphics operations that clip to masks are implemented as a loop which performs
the operation clipped to each of the rectangles comprising the mask. This approach has allowed us
to take advantage of much existing graphics code to perform rectangle-clipped rasterops, and line
and character drawing, etc., without having to modify this code (often written in assembly language
or microcode) to clip to arbitrarily shaped regions.

3. Methods, Implementations and Classes

Flamingo operations are implemented as a set of methods for each object exported by the sys
tem. Each instance of a Flamingo object has a list of pointers to implementations for the methods
available for that object, and a pointer to the object's parent (or class). Any given method, such as
NewPA, RasterOP, or DrawLine, may have several implementations .. for example, the window
manager has its own implementation of NewPA that creates lower-level pixels arrays for the body,
sides and corners of the window, and associates these together in a private structure that represents
the window. Usually, any given object inherits its implementations from several classes -- its parent,
its parent's parent, and so on. For instance, a pixel array used with a window manager has methods
associated with just being a pixel array, with being part of a window, with its ownership by a client
process, and with getting input from an input device.

Each of the layers in our current system is listed below, along with the data type (data type
name in parenthesis) and method implementations added by that layer. Each of the following layers
that exports pixel arrays is built on top of the preceding layer, inheriting some of the methods from
that lower layer, and re-implementing others. In many cases this re-implementation is accomplished
through a super construct, borrowed from Smalltalk 5,6 , whereby an implementation invokes the
parent class' method. We give an example of how this is used in the next section.

- mask(Mask): mask intersection, union, difference, etc.
- ffim(lnput Device): machine dependent input device drivers
- flam (pA): machine dependent output primitives;

rectangular raster operations, unclipped string and line drawing
- fligraph (pA): machine independent graphics;

raster operations, string and line drawing over masks
- coverup(PA): overlapping, mapped pixel arrays
- frawd (pA): window management functions
- user interface(PA): mappings from input events

to window manager functions
- f19 <the first Flamingo application): provides a terminal emulator

and a shell within a Flamingo window

A special method called SetMethod can be used to add new methods or to replace old ones in
any instance of an object. When the system is initialized, a distinguished object for each class is
created, from which subsequent instances of that class inherit their methods. SetMethod can be
used with these class objects (ClassMask, ClasslnputDevice, ClassPA, ClassCoverupPA and
ClassWindow) to replace a method for an entire class of objects. Presently our inheritance is done
via copying: when an object is created, the methods of the parent object are copied into the new

- 75 -

object. What this means for replacing class methods is that the only objects to inherit the new
method are those created after the method has been replaced. We are now re-thinking our inheri
tance mechanism; in the future we will probably delay this binding of methods to implementations.

In our current implementation these layers are all part of a single, monolithic process, but it
has been our intention from the beginning to split off parts of the system into separate processes.
The communication between processes will initially be done through Unix sockets, so that we can
easily port Flamingo to other Unix environments. Later we will take advantage of the more power
ful IPC mechanism provided throughout the Spice environment, which allows communication with
non-Unix hosts. The list of procedure pointers within each object will be replaced by a list of Unix
sockets and/or IPC ports, one for each method, corresponding to the location of the process that
implements that method for that object. To implement methods over a network using message
passing, we will use Matchmaker7 , a remote procedure call generator. With these interfaces, a sin
gle Flamingo system <that is, the complete collection of processes providing a single user with Flam
ingo services) could exist as a multitude of processes on a multitude of machines.

These remote procedure call mechanisms, coupled with the ability to substitute new methods
for any object, or class of objects, will make it easy for client programs to alter or extend any of the
system's default behaviors.

4. Examples

As an example of how this system structure actually works, we will consider what happens
when a Flamingo application performs a raster operation (e.g. copybits) within one of the
application's windows. Several different layers of the system export raster operations: PAs exported
by flam, f1igraph, coverup, frawd, and the user interface level all have a method for rasterop. In this
case, we will assume that the PA inherits its methods from the ClassWindow class, implemented by
frawd.

The window manager, frawd, inherits its rasterop method from coverup. Initially, then, when
the user level code calls rasterop, it gets the rasterop procedure within coverup, providing as argu
ments the source and destination pixel arrays and masks within those pixel arrays specifying the
region to be copied and the destination's clipping region.

Coverup is responsible for maintaining mappings that connect higher-level pixel arrays to
lower-level pixel arrays. These mappings allow a process other than the client to intervene easily in
the management of the actual display of information created by the client program. Mappings can
be as simple or as complex as necessary to implement the particular mapping abstraction at hand.
For the current implementation, a set of mappings is defined for the graphics operations that takes
into account the rank or height of a mapping over other mappings on the same lower-level pixel
array. This particular process of mapping a graphic operation from a higher-level overlapped pixel
array to a lower-level one involves substituting different destination masks representing the actual
shape of the pixel array after all mappings "above" or "covering" the pixel array have been sub
tracted from the mask. The client program can continue to think of its individual pixel array as
being whole, while the mapping process takes into account covered-up parts of the result when actu
ally performing graphical operations.

In our example, for each of the pixel array's mappings, coverup's rasterop method intersects
the argument masks with that mapping's uncovered masks, and calls the rasterop method from f1i.
graph with these clipped masks. The f1igraph rasterop decomposes the masks into rectangles, and
uses the machine dependent rectangle rasterop procedure in flam to actually move the bits.

As a further example that illustrates other aspects of the system design, we will go through the
steps that are taken to 'apply DeletePA <the method that is used to destroy pixel arrays) to a PA
obtained from ClassWindow.

Like all of our procedures that implement methods, the procedure DeletePA performs the
method lookup task -- it locates the implementation of the delete function for the specified pixel

- 76 -

array. The default implementation of ClassWindow is provided by frawd. So assuming that the
method hasn't been replaced, DeletePA will determine that the correct implementation of the dele
tion method for this PA is frawdDeletePA.

Our default window manager creates windows as a set of pixel arrays (supplied by coverup)
representing the border, corners and body of the window, and keeps track of its windows through a
private data structure. What frawdDeletePA does is to free this ancillary window data structure,
call DeletePA to destroy each of the window's component pixel arrays, and then call
DeletePA_SUPER on the window pixel array to delete its lower-level structures.

At this point those structures which made a window out of this pixel array have been des
troyed, but its deletion method pointer still refers to frawdDeletePA. What we want to do is to use
the implementation of DeletePA provided by this object's class' parent class, coverup, to delete the
remaining parts of this pixel array. DeletePA_SUPER does exactly that: it chains through the pixel
arrays' parent pointers to locate coverupDeletePA. This implementation frees each of the pixel
array's mappings, calls DeletePA on each of the pixel arrays to which the original pixel array was
mapped, and then calls DeletePA_SUPER to destroy lower-level pixel array structures. This time
the super method is flamDeletePA, which frees the lowest level elements of the pixel array, includ
ing the 2-dimensional bitmap.

s. The Creation of User Interfaces with Flamingo

As a demonstration of the features of Flamingo, we have already implemented an interpreter
for AndrewS, 9 socket calls. This interpreter, currently built into Flamingo, asserts itself via the
appropriate Unix socket calls as an actual instance of Andrew, and then waits for Andrew calls from
Andrew programs. Note that we are running Andrew binaries. No changes to any of the Andrew
processes are necessary. People writing Andrew code are actually writing Flamingo code! We
should emphasize that Flamingo only resembles Andrew at the program interface level; what the
user perceives is quite different. For example, Andrew only provides tiled windows, while Flamingo
provides overlapped windows, and potentially other arrangements as well.

This interpreter demonstrates the basic functionality of the Flamingo primitives. It has also
made it possible to create an entirely new operating environment for the user with numerous hooks
for implementing still more features and functionality, without rendering the system unusable by the
mass of software written for previous systems. (This is of course simply an argument in favor of
upward compatibility, but has proven to be an equally powerful mechanism to develop the system as
it evolved from just a graphics package.>

Flamingo's object-oriented architecture has provided a flexible mechanism for separating the
display and graphics abstractions important to the application process from the lower level abstrac
tions that are important to the system. Each of these Andrew processes sees only one pixel array,
namely that pixel which represents its window, and more importantly, knows nothing about the
details of that pixel array's method implementations. This pixel array could be a standard top-level
Flamingo window, or it could just as easily be a sub-window inside of a window running someone
else's window manager scheme.

6. Future Work

Flamingo was officially released within our departmental community in October 1985. Now
that we have a system in place, and a growing user community, we are beginning to do some of the
research for which Flamingo was originally intended.

The first issue that needs to be addressed is the creation of a programming interface to Flam
ingo. We have already begun work on a Unix socket interface, and have sketched out a design for
an IPC/Matchmaker interface. OUf first application of these interfaces will come from separating
fl9 from the rest of the system. Later we intend to experiment with separating the Andrew

- 77 -

interpreter, and also flim and flam, the input and output device drivers. The motivation for this
latter split is to provide display support for remote computers, probably Perqs or personal computers,
and to take advantage of special properties of these displays, such as graphics hardware, color, etc.
By porting flim and flam to such hosts, users with suitable network access will be able to connect to
the full Flamingo system and use it through whatever display device they have available.

Currently a few weeks away is a Sapphire 10 interpreter. This interpreter will call on Flam~

ingo primitives from within the server half of the matchmaker remote procedure call interface for
the Sapphire window manager. An interesting demonstration is planned once we have these inter
faces in place: we intend to run, inside a couple of Flamingo windows, both window manager pro
grams, Andrew and Sapphire. These window managers depend only on having some definition of an
underlying graphics output device, a keyboard and a mouse for input devices, and a Unix file sys
tem. From the Flamingo windows, we can provide the virtual graphics necessary for the window
managers to appear in different, overlapping areas of the screen. The Flamingo window can also
provide the appropriate input events as part of its usual mapping of events to user processes. Obvi
ously, certain input operations will have to be reserved for use by Flamingo's user interface in order
to maintain control over the separate processes.

There are a number of performance issues that have yet to be addressed when considering the
task of separating a Flamingo system into communicating processes. One major concern is the pos
sibility that the interfaces between these processes will create substantial communications demands.
How to structure these interfaces so as to achieve reasonable system performance is an open
research problem, but this is precisely the kind of issue that Flamingo has been designed to help us
investigate, and we will be looking at it more in the future.

An interesting use of mappings has been proposed that will allow high-quality images of the
screen to be generated. A typical method for getting pictures of a screen is to simply dump the
state of the raster memory used to generate the screen bits and display this using either a dot-matrix
printer, laser printer, or other suitable, non-alphanumeric device. Such devices as laser printers have
a much finer resolution than that of the screen hardware, and the resulting image is often unclear or
distorted. A Flamingo mapping could be defined for PAs displayed on the screen that would map
all raster operations to a generator of a file of laser printer commands. Line drawing, character
drawing, and all raster operations would all be done in a scale appropriate to that of the printer's
capabilities rather than to the scale of the screen.

Finally, other work needs to be done to make the system more comfortable to use; we will be
adding menus, title bars, icons, etc. Another area of interest is to provide support for experimental
input devices being developed by other groups within the department. Also, we are interested in
examining different styles of window management and user interface; our first step in this direction
will probably be to implement the constraint-based tiling algorithm developed by Cohen, Smith and
Iverson.. 11

7. Final Remarks

Flamingo addresses the problem of flexible, robust access to multiple processes running on
multiple machines. Our most pressing problem is one of distributed resource management. Using
the Spice Sesame 12 distributed file system, users of Spice machines have uniform access to the data
located on a large number of distributed machines, but Spice users have never had uniform access to
the processing power of those machines.

We gratefully acknowledge the entire Flamingo working group, which has at times included
Rich Cohn, Roger Dannenberg, Dario Giuse, Mark Hjelm, Paul McAvinney, Rob MacLachlan,
Randy Pausch, Rick Rashid, Walter Smith, Pedro Szekely, Avie Tevanian, and Skef Wholey, for
their insights, arguments and ideas. The first running Flamingo system came up on June 5, 1985,
and many subsequent versions were written during the summer and fall of 1985 by Ed Smith, David
Anderson, and Walter Smith, with some help from Avie Tevanian and the entire MACH operating
system crew.

- 78 -

8. References

1. CMU Computer Science Department, Proposal for a Joint Effort in Personal Scientific Com
puting, August 1979.

2. R. F. Rashid, G. G. Robertson, "Accent: A Communication Oriented Network Operating Sys
tem Kernel," in Proceedings of the 8th Symposium on Operating Systems Principles
(December 1981).

3. R. V. Baron, R. F. Rashid, E. H. Siegel, A. Tevanian, M. W. Young, "MACH-I: An Operat
ing System Environment for Large-Scale Multiprocessor Applications," IEEE Software (July
1985) .

4. R. V. Baron, R. F. Rashid, E. H. Siegel, A. Tevanian, M. W. Young, "MACH-I: A
Multiprocessor-Oriented Operating System and Environment," SIAM Computing (to appear).

5. D. H. H. Ingalls, The Smalltalk-76 Programming System Design and Implementation, Xerox
PARC (1980).

6. A. Goldberg, D. Robson, Smalltalk-80, Addison-Wesley (1983).

7. M. B. Jones, R. F. Rashid, M. Thompson, "MatchMaker: An Interprocess Specification
Language," in ACM Conference on Principles of Programming Languages (January 1985).

8. J. A. Gosling, D. S. H. Rosenthal, A Window Manager for Bitmapped Displays and
UNIX(tmJ, Information Technology Center, Carnegie-Mellon University (1984).

9. J. A. Gosling, D. S. H. Rosenthal, A Network Window-Manager, Information Technology
Center, Carnegie-Mellon University (1984).

10. PERQ Systems Corporation, User's Guide to the Sapphire Window Manager, 1984.

11. E. S. Cohen, E. T. Smith, L. A. Iverson, "Constraint-Based Tiled Windows," in Proceedings
of the 1st International Conference on Computer Workstations (1985).

12. M. B. Jones, R. F. Rashid, M. Thompson, Sesame: The Spice File System, Department of
Computer Science, Carnegie-Mellon University (1982).

A Proposal for Interwindow Communication and Translation Facilities

Daniel P. Gill

Exxon Research and Engineering Company
ISO Park Avenue

Florham Park, New Jersey 07932
(201) 765-6593

ABSTRACT

With the increasing levels of sophistication of windowing systems being intro
duced for Unixt today, new capabilities are now needed to allow cooperating
window-based processes to communicate easily and initiate transformations on live
data flowing between these cooperating processes. This paper proposes a high
level interwindow communication scheme whereby arbitrary window-based
processes can dynamically set up communication links between one another and
optionally invoke a series of translation filters to perform appropriate data transfor
mations (translations) on the data flowing though the communication links between
the windows.

Each of the new proposed facilities will be described together with the inter
nal data structures that must be maintained. Also a 4.2BSO Unix implementation
of the proposed interwindow communication (IWC) primitives and an interactive
window-system-driven interface constructed from these primitives is discussed.

The motivation for the work described herein is a result of the author's
experience with developing a window-driven integrated environment for engineering
workstations at Exxon Research and Engineering Co. The work was performed on
a 6S010-based Sun Workstation*, part of which involved the customization of and
addition to the Sun-provided software for control of their window system, and
represents some of the ongoing software environment research at Exxon Research
and Engineering Co.

Introduction

A number of Unix-based windowing systems have been introduced in the last few years and
their design and capabilities have been well documented in the literature [7], [S], [9], [10], [11],
[12]. In general, these systems present a powerful, general purpose operating environment, provid
ing a wide array of multi-window facilities. However the one area which these window systems have
not yet addressed is the area of window-related interprocess communication. By its omission, the
burden is placed on each application developer to incorporate their own interwindow facilities.

In the context of a windowing system, mechanisms to allow processes to communicate once
they are bound to windows (without any pre-conceived preparation to communicate), either are
unapplicable (e.g. pipes) or are too low-level and cumbersome to use directly (e.g. sockets). Furth
ermore, none of these mechanisms were designed to be used in an interactive mode <the way in
which one typically interacts with a window system). In other words there is no easy way to
dynamically create channels of communication between processes running in windows and redirect

t Unix is a trademark of AT&T Bell Laboratories
*Sun Workstation is a trademark of of Sun Microsystems, Inc.

- 80-

information flows. Moreover, it would also be desirable to be able to insert translation filters in the
connection stream. In fact, the desire for just this type of capability has been alluded to by the
designers of an existing window system [7]: "More general IPC under UNIX would be nice -- - we
would like to be able to use the window manager dynamically to connect programs in building block
fashion."

Window systems should have the facilities to allow processes to cooperate and thus not force
application programs to handle these operating system interactions directly. Therefore, what is
needed is a high-level set of interwindow communication (IWC) facilities. They should be invokable
by a series of point-and-click operations (mouse-driven) on a graphical interface and have a reason
able high-level programmatic interface. They should be integrated and included as part of a win
dow management system's overall functional working set (or as part of a library extension).

Implementation Approaches

The two most obvious methods of implementing these interwindow facilities would be either at
the nucleus level of an operating system (e.g., kernel of the Unix operating system) or at a higher
window system level (e.g., SunWindowst).

Of these two methods, arguments commonly made for incorporating these kinds of facilities at
the kernel level raise points such as:

1. Since interwindow communication embodies many of the same concepts as an operating system,
they should be implemented within the kernel.

2. Since IPC facilities vary from operating system to operating system (or even version to version of
the same operating system *), this issue should be addressed on a per application basis using the
available kernel-based IPC facilities of the particular operating system.

Arguments against putting interwindow communication in the kernel are:

1. There would be too much kernel overhead associated with such a set of facilities which would
degrade window-system performance and also possibly increase the size of the kernel.·

2. It would be desirable to have a reasonably portable (and thus, higher level) set of interwindow
interprocess tools.

The way window-bound processes communicate is most certainly an operating system issue, but a set
of high-level facilities can be designed in such a way that most operating systems (certainly all
modern versions of Unix) could provide the needed underlying mechanisms. In this manner a stan
dard higher level protocol for interwindow communication can be developed with the added bonus of
not having to implement new low-level, kernel-based IPC mechanisms to specifically support
interwindow communication. It is the author's opinion that higher level window systems can realist
ically handle interwindow IPC.
Furthermore, these facilities can be built using existing fPC mechanisms.

t SunWindows is a trademark of Sun Microsystems, Inc.
*For example, System III Unix V.s. System V Unix.
• Admittedly, kernel overhead considerations raise important performance questions regarding low level implemen
tations. However with the advent of faster processors (e.g., the Motorola 68020, the National Semiconductor
32332 and the Intel 80386) supporting these operations, it becomes less of an issue.

- 81 -

Existing Unix IPC Facilities

At the kernel level the existing variants of the Unix System offer a wide array of interprocess
communication facilities. The ubiquitous pipe, common to all Unix Systems, provides a powerful
mechanism for related processes to communicate with. However with this form of communication,
processes that decide to communicate after they have been created (without connections having been
set up in a common ancestor), are not able to do so. To remedy the limitations of the pipe, each
variant of the Unix System has incorporated their own IPC extensions.

AT&T's System V [I] offers, in addition to the unnamed pipe, named pipes, semaphores,
shared memory and message queues. These are useful for specific applications, but they are by no
means what might be considered general IPC mechanisms. In addition they are extremely low-level
and awkward to use for application programs.

Berkeley's 4.2BSO System offers an extremely general set of IPC mechanisms based on sock
ets [2]. They have the added bonus of allowing communication between processes residing on dif
ferent machines.

The AT&T Bell Laboratories Eighth Edition streams [3] mechanism is probably the most
general, elegant and easy to use IPC method proposed thus far. Although the Eighth Edition ver
sion of Unix is not generally available, the ideas presented are an excellent model on which to base
higher level mechanisms.

Interwindow Communication Primitives

In order to describe the proposed set of interwindow communication primitives, some new ter
minology must first be introduced. In this paper we are only considering communicating windows
which are of tty emulation window or subwindow type since this is most intuitive and we are dealing
exclusively with byte stream communications.

An interwindow channel is a unidirectional connection ultimately between two windows
(window-bound processes). In other words this channel is capped at either end by a window-bound
process (as opposed to an arbitrary possibly non window-bound process) and forms a virtual circuit
connection similar to a Unix pipeline. When an interwindow channel is constructed, it is assigned a
unique interwindow channel descriptor. From then on during its existence it is referred to by that
unique tag.

A translation filter (window-bound process or non window-bound process which transforms a
byte stream) may be inserted dynamically at intermediate points along the interwindow channel.
An interwindow channel (node) address is assigned upon insertion (each node gets one) and can be
used to reference points of interest (processes) in the infrastructure.

What follows are the basic building block primitives to support interwindow communication.
They can used to easily construct interactive, window-system-driven [We tools. The proposed calls
are designed so as to be relatively operating system independent. The notation used is the C-like
description language used in £14J.

An interwindow channel, connecting two window-bound processes, is initiated by the call:

iwchan == iwc_request(windowidl, windowid2, iwaddrl)

result int iwchan
result int *iwaddrl
char *windowidl
char *windowid2

/* interwindow channel descriptor */
/* interwindow channel address of window 1 */
/* source window */
/* sink window */

in the potential sending process (here windowidl), and completed by the call:

- 82 -

iwchan ~ iwc_8ccept(windowidl. windowid2. iwaddr2}

result int iwchan
result int *iwaddr2
char *windowidl
char ·windowid2

/* interwindow channel descriptor */
/* interwindow channel address of window2 */
/* source window */
/* sink window */

in the potential receiving process (here windowid2).

This successful completion of these calls sets up a producer-consumer relationship between
windowidl and windowid2 respectively, with both processes being returned an interwindow channel
descriptor. Also returned to each process is an interwindow channel {node} address which
represents the particular process's position on the interwindow channel. These calls obviously pro
vide a distributed interface, similar to the programming language Ada'st rendezvous mechanism.
They are executed by processes that are currently disjoint and wish to establish a producer
consumer relationship. A centralized call:

iwchan" iwc_connect(windowidl, windowid2. iwaddrl. iwaddr2}

result int iwchan
result int ·iwaddrl
result int *iwaddr2
char ·windowidl
char ·windowid2

/* interwindow channel descriptor */
/. interwindow channel address of window I */
/. interwindow channel address of window2 ./
/. source window */
/. sink window ./

also creates an interwindow channel. This call would be used in conjunction with a connection
server, and is functionally equivalent to the iwc_request - iwc_8ccept pair. The primary reason for
including a somewhat redundant IWC mechanism is ease of invocation; with this primitive, informa
tion need only be supplied at one centralized location (whereas with the above mentioned distributed
primitives, the required information must be supplied at two places).

To disconnect an interwindow channel, a window-bound process issues the following call:

iwc_close (iwchan)

int iwchan /* interwindow channel descriptor */

This is done by/for processes on both ends of the channel.

A process may redirect output for display in a specified window by the call:

iwcJedir(windowid}

char *windowid /* output redirection window */

Note, this call does not set up a producer-consumer relationship between a process and a window
bound process, it merely redirects the output flow from a process to a particular window for display

t Ada is a registered trademark of the U.S. Government· Ada Joint Program Office

- 83 -

puposes only.

Once an interwindow channel has been successfully set up, it may be desirable to dynamically insert
a translation filter into the connection stream. This is accomplished by the call:

iwaddr s= iwc_tfin(trfilter, iwchan, iwprocl, iwproc2)

result int iwaddr
int iwchan
char *trfilter
char *iwprocl
char *iwproc2

/* interwindow channel address */
/* interwindow channel descriptor */
/* translation filter to be inserted */
/* process on interwindow channel */
/* process on interwindow channel */

which interposes trfilter between iwprocl and iwproc2 on the interwindow channel identified by
iwchan.

A translation filter can be removed from the connection stream, thereby reconnecting its predeces
sor and successor on the interwindow channel by the call:

iwc_tfout(trfilter, iwchan)

int iwchan
char *trfilter

/* interwindow channel descriptor */
/* translation filter to be removed */

This call removes connected process trfilter from the interwindow channel identified by iwchan.

An Experimental 4.28SD Unix Implementation

A prototype implementation of the above described interwindow communication primitives was
developed for a Sun Microsystems Workstation running 4.28SD Unix. They were for the most part
constructed with standard 4.2BSD file system and IPC system calls. However, some additionallWe
system structures and manipulation routines also had to be built.

There is an interwindow channel table which contains one entry for each interwindow channel
that has been constructed. The table is of fixed length and the indices into this table are the
interwindow channel descriptors themselves. Each entry contains a pointer to a structure called an
interwindow node reference table. One fixed length node reference table exists for each interwindow
channel. Each table contains the same number of entries corresponding to number of available nodes
for an interwindow channel. The indices into the node reference table are the interwindow {node}
addresses themselves and each entry in the table contains either a null pointer (for an unallocated
uninserted node) or a pointer to an interwindow node attribute structure (for currently allocated
inserted nodes). Each node attribute structure contains:

}) a process ID
2) a successor pointer (to an interwindow (node) address)
3) a predecessor pointer (to an interwindow (node) address)
4) an associated window namet (if process at this node is window-bound)

or windowless name (if this process is non-window-bound)

An IWe service daemon was constructed to provide a single point of contact for requesting

t Window names were arbitrarily chosen to be a series of character strings (j.e. "winl'" "win2"....."winN"). The
particular naming convention has no inherent importance. However. taken in the context of the node attribute

- 84 -

IWC services (these services are only requested by IWe primitives). This service server is a con
tinuously existing process which listens (at a well known address) on a socket. It accepts connec
tions from client IWe processes, obtaining a message over the newly connected socket which con
tains (among other things) the type of service required and parameters needed to carry out the ser
vice. The service daemon then creates (via a fork/exec sequence) the appropriate server process
(note: the child server process inherits the client-server socket connection) which finally carries out
the client request. An important function of the IWe service daemon is to provide support services
for Iwe system structures. The general outline of the IWe service daemon is as follows:

create socket to detect client requests at well known address
establish queue to allow simultaneous connection requests
for (;;){

accept client connection thereby creating socket in which
client-server transmission will take place

receive message from client to ascertain required service
if {fork 0===0) {

close detection socket
exec appropriate server process

}
close connection socket

With the above described IWe system structures and support services as given, the implemen
tation of the IWe primitives can now be outlined.

Here is a rough sketch for the iwc_request and iwc_accept calls:

iwc_request (00.)
{

create socket
initiate interprocess connection

via socket
make interwindow channel just created

- standard output
update (we structures

iwc_accept Coo)
{

create socket
accept interprocess connection

via socket
make interwindow channel just created

- standard input
update (We structures

This particular implementation of the calls uses the 4.28S0 (PC mechanism - sockets to create a
pipe-like connection between unrelated processes (it could be viewed as a simulation of AT&T's
System V named pipes). First, a socket is created in the source window-bound process {the one that
invokes iwc_requesd and also in the sink window-bound process (the one that invokes iwc_accepd,
then a process to process connection is arbitrated by the cooperating window-bound processes (the
rendezvous is made) thereby creating an interwindow channel. Then standard output of the source
window becomes the interwindow channel, and standard input of the sink window becomes the other
end of the interwindow channel. IWC structures are then updated {via (We service daemon service
requests) to reflect the creation of the interwindow channel and its two end point nodes and the
producer-consumer relationship between the two window-bound processes is consummated.

The algorithm for iwc_close is as follows:

structure described above, what is provided is a process name to process 10 mapping for window-bound <and non
window-bound) processes existing and being manipulated in the window system.

- 85 -

for <interwindow channel to be closed)
for each interwindow node (

terminate associated process
update associated IWC.structures

)
insert null pointer in interwindow channel table entry

Here, an extremely simplified approach was taken. Basically the interwindow channel is shut down
<including all processes associated with the interwindow channel). This approach poses no real
problems since everything can be reconstructed interactively in building block fashion.

Iwc_redir was trivial to implement. This call causes output from the invoking window to be
continually redirected to the slave side of the pseudo terminalt associated with the target of redirec
tion window. This in turn causes all output that normally would have went to the source window to
show up in the target of redirection window.

Iwc_tfin inserts an arbitrary (translation filter) process (window-bound or non window-bound
process) between two currently existing interwindow processes (processes currently residing on an
interwindow channel). This transaction actually involves the cooperation of three processes; the
predecessor process, the /we service daemon and the successor process. The algorithm/process
interaction is as follows:

Predecessor Process /we Service Daemon Successor Process

create socketcreate socket

make predecessor-to-tfin channel,

standard output

create socket

initiate connection to

IWC service daemon accept connection from

send message requesting predecessor process

tfin service create and start tfin service process

(in tfin service process)

initiate connection to

successor process accept connection

from service process

make ljIn-to-successor channel,

standard input

make predecessor-to-tfin channel,

standard input

make tfin-to-successor channel,

standard output

exec translation filter

<translation filter now reads

from predecessor process

and writes to successor

process via IWC channel)

iwc_tfin (the primitive) is invoked from the potential predecessor process. It initiates a socket con
nection to the we service daemon and sends a message {upon successful completion of the

t Pseudo Terminals are two part software devices that simulate the actions of hardware associated with a glass
teletype. The slave side presents an hardware-like interface which fools programs into believing that they actually
have control of dedicated display terminal. The master side allows a program such as a window manager to actual
ly control what is displayed on a partitioned screen and where it is displayed.

- 86 -

connection) containing information needed for the service daemon to carry out the tfin service. The
service daemon accepts the connection, receives and acts on the request-for-service message and
fork/execs the tfin service process. Concurrent with this activity, the predecessor-to-IWe service
channel becomes the standard output channel in the predecessor process. Meanwhile in the tfin ser
vice process, a socket connection is initiated to establish a communication channel to the potential
successor process. The successor process accepts the connection from the tfin service process and
makes that channel it's standard input. Concurrent with this activity, the tfin service process makes
the channel from it's predecessor process, standard input, and the channel to it's successor process,
standard output. Then it overlays itself with the desired translation filter, which inherits the prede
cessor and successor connections.

Iwe_tfout removes a translation filter from the interwindow channel. This primitive has not
yet been implemented.

Interactive Window-System Interface

An interactive window system interface can easily be constructed out of the above primitives.
As an example of this, we will look at the structure and usage of an interactive interface (that runs
under SunWindowst [17]) that allows one to establish interwindow channel.

Pop-up menus are used as a selection mechanism. A user accesses IWC facilities by first
pointing to the border of an existing window which exposes the tool manager*- [17] pop-up menu.
Then by bringing the Iwe menu to the foreground (the menu is stacked behind the tool manager
pop-up menu). This reveals a number of Iwe options from the previously obscured pop-up menu.
The options appear as follows:

Iwe

Request channel

Accept channel

Request filter out

Accept filter in

Remove filter

Disconnect channel

To create an interwindow channel using this interactive interface is a a two-part process and may be
accomplished as follows; A user positions himself (with a pointing device) in the border of the
potential source window, brings up the the Iwe menu (as described above) and selects
IRequest channell This event causes a program to execute which prompts the user for the name of
the sink window. By inspection (window names are displayed in the namestripes of open windows),
the user ascertains the window name and responds to the prompting program. Once the information
is successfully entered, iwc_request is invoked which initiates the interwindow connection. The user
must then position himself in the potential sink window and select IAccept channell This event
cau~es a program to execute which prompts the user for the name of the source window. Once the

t SunWindows is a trademark of Sun Microsystems, Inc.
1: The tool manager is Sun-provided window manipulation menu that allows a user to move, expand, shrink, open,
c1ose,...etc. existing windows in the SunWindows system.

- 87 -

information is successfully entered, iwc_8ccept is invoked which completes the interwindow connec
tion. The whole process can be described as follows:

on events (IWC selections - request channel, accept channel)
prompt for names of the windows to be connected
invoke iwc_request and iwc_8ccept

which then cooperate to consummate an interwindow channel
connection via sockets.

Other options selected work in a similar fashion; an event or events <i.e. selecting an option
from a pop-up menu(s», cause a group of IWC processes to interact and provide the desired end
result.

Conclusions

This was a first attempt at the design and implementation of high-level interwindow communi
cation primitives. A number of alternatives and additions have been considered. An interface
extension to the 4.2BSD socket facility to allow dynamic reconnection of sockets was suggested by
one of the authors of the X window system [22]. This would facilitate the easy implementation of
many of the IWC primitives, especially the ones involving translation filters.

A set of interactive interwindow communication facilities has proven to be a useful add-on to a
window management system. They allow users to interface with a window system in a purely
interactive mode of operation in building block fashion. This alleviates the necessity for program
mers to pre-construct static interprocess links between potential communicating window system
processes. It is hoped that future developers of windowing systems recognize the need for these kinds
of capabilities and provide them as part of their window system toolbox.

Future Work

Future research in this area centers around alternate ways of expressing the ideas presented,
and alternate implementation strategies. For instance, using remote procedure calls [18], [19], [20],
[2 Il to build IWC facilities or using Eighth Edition Unix System [5] IPC Primitives (when they
become available) as a foundation.

Acknowledgements

I would like to thank George Lyon for his contributions and feedback. Also, I would like to
thank Len Barnstone, Jay Dev, Mark Eisner, Paul Nunn, Dan Sarnowski and Jack Wiesenthal.
Without their continuing support and encouragement none of this would have been possible. Drew
Wright provided suggestions on some of the early drafts. In reviewing this paper. Jim Gettys sup
plied many useful suggestions and much food for thought. Finally, special thanks go to Mike Cat
tolico and Frank Greco who provided valuable comments and suggestions on some of the more
technical issues.

References
III UNIX System V - Release 2.0 Programmers Reference Manual, AT&T Technologies (I 984)
[2] Leffler, S., Joy, W. and Fabry, R., A 4.2BSD Interprocess Communication Primer, Computer
Science Division, Department of Electrical Engineering and Computer Science. University of Cali
fornia, Berkeley. CA 94720 (July 1983)
[3] Ritchie, D.M., "A Stream Input-Output System", AT& T Bell Laboratories Technical Journal,
Vol. 63, No.8, (October 1984)
[4] Killian, T.J., "Processes as Files ll

, USENIX Summer Conference Proceedings, Salt Lake City,
UT (June 1984)
[5] Presotto, D.L. and Ritchie, D.M., "Interprocess Communication in the Eighth Edition Unix

- 88 -

System II, USENIX Summer Conference Proceedings, Portland OR <June 1985)
[6] Pike, R., HGraphics in Overlapping Bitmap Layers ll

, ACM Transactions on Graphics 2, 2
(April 1983)
[7] Rhodes, R., Haeberli, P. and Hickman, K., HMex - A Window Manager for the IRIS",
USENIX Summer Conference Proceedings, Portland OR <June 1985)
[8] Evans, S.R., HWindows with 4.2BSD II

, Unicorn Conference Proceedings, San Diego CA <Janu
ary 1983)
[9] Pike, R., HThe Blit: A Multiplexed Graphics Terminal ll

, AT& T Bell Laboratories Technical
Journal, Vol. 63, No.8, (October 1984)
[10] Jacob, R.J.K., HUser Level Windows for Unix", Uniforum Conference Proceedings, Washington
D.C. <January 1984)
[11] X Window System Protocol Specification, MIT Project Athena (1985)
[12] Programmers Guide to the Window Manager: A Guide for the Uninitiated (for Release 1 of
the ITC Prototype Workstation), Information Technology Center, Carnegie Mellon University <June
1985)
[13] User's Manual for Release J of the Andrew System, Information Technology Center, Carnegie
Mellon University <June 1985)
[14] Joy, W., Cooper. E., Fabry, R., Leffler, S., McKusick, K. and Mosher, D., 4.2BSD System
Interface Overview, Computer Science Division, Department of Electrical Engineering and Com
puter Science, University of California, Berkeley, CA 94720 <July 1983)
[15] Wulf W.A., Levin R., Harbison S.P., HHYDRA/C.mmp: An Experimental Computer Systemll

,

McGraw Hill (I 98 I)
[16] Gehani, N., HAda Concurrent Programming ll

, Prentice Hall (I984)
[17] Programmers Reference Manual for SunWindows, Sun Microsystems, Inc., Mountain View,
CA 94043 (May 1985)
[18] Nelson, B.J., HRemote Procedure CaIre., Tech. Report CSL-81-9, XEROX Palo Alto Research
Center, Palo Alto, CA (I 98 I)
[19] Courier: the remote procedure call protocol, XEROX System Integration Standard XSIS·
038112, XEROX Corporation, Stamford Connecticut (December 1981)
[20] Birrell, A.D., Nelson, B.J., HImplementing Remote Procedure Calls", ACM Transactions on
Computer Systems 2, 1 (February 1984)
[21l Networking on the Sun Workstation, Sun Microsystems, Inc., Mountain View, CA 94043
(May 1985)
[22] Gettys, J., MIT Project Athena, Personal communication, (November 1985)

Problems Implementing Window Systems in UNIxt

James Gettys

Digital Equipment Corporation
Project Athena

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

Over that last 18 months the X window system has been implemented under
4.2B8D UNIX at MIT at the Laboratory for Computer Science and Project
Athena. While on the whole the resulting design is reasonably clean and pleasing,
UNIX strongly limited the possible implementation strategies. This paper discusses
the problems encountered, how they influenced our design decisions, and suggests
issues for future study and development as UNIX evolves toward a distributed
environment.

X Window System Design

While this paper is not specifically about the X window system, X will be used as an example
for much of the discussion. X is best described using a client/server model. X consists of a collec
tion of client programs which communicate with the window system server. They are implemented
entirely in user code. All communications with the window system occur over a stream connection
to the window system. X is completely network transparent; Le. a client program can be running on
any machine in a network, and the clients and the server need not be executing on the same
machine architecture. The block diagram shown in Figure 1 describes the structure of the system.

X supports overlapping possibly transparent windows and subwindows to arbitrary depth.
Client programs can create, destroy, move, resize, and restack windows. X will inform clients on
request of key presses, key releases, button presses, button releases, mouse window entry and exit,
mouse motion, a number of types of window exposure, unmap (removal of a window from the
screen), and input focus change. Cut and paste buffers are provided in the server as untyped bytes.
Graphic primitives provided include dashed and dotted multi-width lines, and splines. There is a
full complement of raster operations available. The implementation supports color, though the
current protocol limits the depth of a display to 16 bits/pixel.

The X window system consists of a collection of UNIX programs providing various services on
a bitmap display. There is only a minimal device driver to field interrupts· from mouse, keyboard,
and potentially a display engine. The X server accepts connections from client applications pro
grams. Window, text and graphics commands are all multiplexed over (usually) a single connection
per client. Multiple clients may connect to the server.

The X protocol is the only way to communicate to the window system. The X server enforces
clipping, does resource allocation, multiplexes output from multiple clients, performs hit detection
for mouse and keyboard events, and performs graphics primitives in windows. The protocol is
entirely based on a stream. The current implementation uses TCP as its stream transport layer;
though it has been run experimentally using DECNET stream connections. A client program may
run on any machine in a network. On a local net, performance is the same or better when run

t UNIX is a Trademark of AT&T Bell Laboratories.

- 90 -

remotely as when run locally given two identical unloaded processors.

The X server is a single threaded server program. Requests from clients are processed in a
round robin fashion to provide apparently simultaneous output. This has proven to be sufficient, and
vastly simplified the design and implementation. Single threading provides all locking and syn
chronization without any complex structure. The X server must therefore be very careful never to
block waiting on a client, and exploits the observation that each individual graphics operation is very
fast on a human time scale (though it may be slow on a systems time scale). The 4.2BSD facilities
that make this easy to implement include select(2), non-blocking I/O, and the network mechanism
OPC to unrelated processes).

The current X server implementation does NOT maintain the contents of windows. Refresh of
a damaged window is the responsibility of the client. The server will inform a client if the contents
of a window has been damaged. This was motivated by a number of observations: 1) clients often
have their own backing store, and this must be maintained by most programs when resized anyway;
if the window system provides backing store, it is often duplicating existing facilities. 2) keep the
window system simple and FAST. 3) the amount of data that would have to be stored for bitmap
backing store on color displays is very large. Naive UNIX applications are run under a terminal
emulator which provides the refresh function for them.

X delegates as much to a client as possible. It provides low level "hooks" for window manage
ment. No less than three window manager programs (a separate client program in the X design
from the window system) have been written to date, and provide quite different user interfaces.
Menus are left to client code to implement, using the flexible primitives X provides. There have
been four different styles of menus implemented to date, including a quite sophisticated "deck of
cards" menu package.

Appl Appl

keyboard
mouse

Figure I: Block Diagram Structure of X

X runs as of this writing on four quite different types of hardware, from very intelligent to
very simple. An example of a very intelligent (and reasonably well designed) piece of hardware
from the programmers point of view is the DEC VsIOO, though it suffers due to the nature of its
interface to a VAX, which adds overhead and latencies to each operation. A QVSS display on a
MicroVAX (VS1 and VS2) is at the opposite end of the spectrum, being a simple bitmap with no
hardware assist. Other ports are in progress.

- 91 -

Alternatives to User Process Window Systems

As currently implemented on most machines, the UNIX kernel does not permit pre-emption
once a user process has started executing a system call unless the system call explicitly blocks. Any
asynchrony occurs at device driver interrupt level. UNIX presumes either that system calls are very
fast or quickly block waiting for I/O completion.

This has strong implications for kernel window system implementations. While window system
requests do not take very long (if they did, the presumptions made in X would be unacceptable),
they may take very long relative to normal system calls. If a system call is compute bound for a
"long period", interactive response of other processes suffers badly, as the offending process will
tend to monopolize the CPU. One might argue that this is not offensive on a single user machine
but it is a disaster on a multiuser machine. If graphics code and data is in the kernel for sharing, it
permanently uses that much of kernel memory, incurs system call overhead for access, and cannot
be paged out when not in use.

Similarly, in X as well as most other window systems, if a window system request takes too
long, other clients will not get their fair share of the display. This is currently somewhat of a prob
lem during complex fill or polyline primitives on slow displays. The concept of interrupting a graph
ics primitive is so difficult that we have chosen to ignore the problem, which is seldom noticeable. If
such graphics primitives occur in system calls, they have a much greater impact on process schedul
ing.

An alternative to a strictly kernel window system implementation splits responsibility between
the kernel and user processes. Synchronization, window creation and manipulation primitives are
put in the kernel, and clients are relied on to be well behaved for clipping. Output to the window is
then performed in each user process. This has several disadvantages (presuming no shared libraries,
not available on most current UNIX implementations). Each client of the window system must must
then have a full copy of graphics code. This can be quite large on some hardware, replicated in
each client of the window system. For example, the current bit blit, graphics and clipping code for
QVSS is approximately 90kbytes, or 18000 lines of C source code. Fill algorithms may also require
a large amount of buffer space.

Even worse (as the number of different display hardware proliferates with time on a single
machine architecture) is that this split approach requires the inclusion in your image of code for
hardware you do not currently have. Upward compatibility to new display hardware is also impossi
ble without shared libraries, but dynamic linking is really required for the general solution.

With much existing hardware it is hard to synchronize requests from multiple processes if the
hardware has not been designed to efficiently support context switching. There are sometimes work
arounds for these problems by "shadowing" the write only state in the hardware. We have seen
displays which incur additional hardware cost to allow for such multiprocess access. One must also
then face the locking of critical sections of window system data structures if the window system is
interruptible.

UNIX internal kernel structuring currently provides most services directly to user processes. It
would be difficult to provide network access to the window system if it were in the kernel due to this
horizontal structure but a better ability to layer one facility on another would improve this situation.
Again, this is a failure of the kernel to be sufficiently modular to anticipate the evolving environ
ment.

X finesses all of these problems: I) X and client applications are user processes; ergo no
scheduling biases. 2) There is only one copy of display code required, in the server, which can be
paged since it is completely user code. This also saves swap space, in short supply on most current
workstations. The resulting client code is thus small. Minimal X applications are as small as 16k
bytes. No graphics code is in an application program. 3) Client code can potentially work with new
hardware without relinking, as no display specific code appears in a client program image. 4) Net
work access to the window system comes at no additional cost, and no performance penalty (in prac
tice, performance is often gained). 5) X avoids system call overhead by buffering requests into a
single buffer and delaying writing in a fashion similar to the standard I/O library. The system call

- 92 -

overhead for output is therefore reduced by well over an order of magnitude per X operation. 6)
User process code is easy to debug. Some complications can arise due to the distributed nature of
the system. In practice, this has rarely been a problem. 7) Applications requiring a "compute
server" can be run from the user's workstation.

Kernel lightweight processes could be used to solve the non-preemptable nature of system calls
and would create more options for window system implementations. Since raster operations can be
quite long lived, performing these in the current structure allows one process to monopolize the sys
tem to the detriment of other processes. Since all context in the system call layer of the kernel is
associated with a user process, there is currently no way to divorce such operations from a process

I and schedule them independently.

While lightweight processes would unnecessarily complicate the X server design (requiring us
to lock data structures and perform synchronization), they could be used prevent the most common
X programming mistake. Programmers new to X invariably forget to flush the output buffer when
testing their first program. A timer driven lightweight process in clients would be useful to guaran
tee automatic flushing of the buffers.

Shared Memory

On a fast display and processor, X may be performing more than one thousand operations (X
requests) per second. If every access to the device requires a system call, the overhead rapidly
predominates all other costs. X uses a shared memory structure with the device driver for two pur
poses: 1) to get mouse and keyboard input and 2) to access the device or write into a memory bit
map.

As pointed out before, X is a single threaded server. Since client programs should be able to
overlap with the window system as much as possible (remember that you may be running applica
tions on other machines), it is particularly important to send input events to the correct client as
soon as possible. It is therefore desirable to test if there is input after each graphic output opera
tion. This test can be performed in only a couple of instructions given shared memory, and would
otherwise require either one system call/output operation (to check for new input> or a compromise
in how quickly input would be handled.

All input events are put into a shared memory circular buffer; since the driver only inserts into
the buffer, and X only removes from the buffer, synchronization is easy to provide with separate
head and tail indices (presuming a write to shared memory is atomic).

Output on the QVSS is directly to a mapped bitmap. In the case of the Vs I00, a piece of the
UNIBUSt and a shared DMA buffer are statically mapped where both the driver and the X server
can access them. Output requests to the VsIOO are directly formated into this buffer, minimizing
copying of data.* This permits the device dependent routines to start I/O transfers without system
call overhead (by directly accessing device CSR registers), and avoids UNIBUS map setup overhead
that DMA from user space requires.

These changes dramatically increased performance and improved interactive feel when imple
mented, while greatly reducting CPU overhead. Since proper memory sharing primitives are lacking
in 4.2BSO, it was implemented by making pages readable and writable in system space, where they
are accessible to any process. In theory, any program on the machine could cause a VsIOO imple
mentation to machine check (odd byte access in the UNIBUS space), though in practice it has
never happened. None the less, it is the ugliest piece of the current X implementation. We are
more willing to allow a server process to access hardware directly than kernel code, as it is much
easier to debug user processes than kernel code.

The current X implementation uses a TCP stream both locally and remotely, though one could

t UNIBUS is a trademark of Digital Equipment Corporation.

*Our thanks go to Phil Karlton, of Digital's Western Research Lab. for the first implementation of this mechan
ism.

- 93 -

easily use UNIX domain sockets for the local case at the cost of a file descriptor. For current appli
cations, the bandwidth limitations (of approximately 1 million bits/second on 780 class processor) is
not major, though faster devices (and image processing applications) would probably benefit from
implementation of a shared memory path between the X server and client applications.

Current shared memory implementations in variants of UNIX are not sufficient. Memory
sharing primitives should allow appropriately privileged programs to both share memory with other
processes and map to both kernel space and I/O space. Shared libraries (available in some versions
of UNIX) would also increase the options available to window system designers (see below).

File Descriptors

Andrew, the window system developed at the ITC at CMU [I] uses one connection (file
descriptor) per window. While simple from a conceptual level, also allowing naive applications to do
output to a window, it ties an expensive resource (file descriptor and connection) to what should be
a cheap resource (a window or sub-window). It requires more kernel resources in the form of socket
buffers for each file descriptor. In addition, the handshaking required for opening a connection is
expensive in terms of time and will become more so once connections become authenticated. The
attraction of having a simple stream interface to a window can be had by other means [2]. In addi
tion, if a window is tied to a file descriptor, the application loses the implicit time sequencing pro
vided by the event stream coming over a single connection.

One X application uses more than 120 subwindows, all multiplexed over a single connection.
One could postulate a single connection per client for input, and a single connection per window for
output; with the limited number of file descriptors in 4.2BSD and other current versions of UNIX,
this was eliminated as a possibility. Sixteen client programs seems to be sufficient for most people,
<this is limited by 20 file descriptors on standard UNIX, with four file descriptors needed for X; one
for the display, keyboard and mouse, two to listen for incoming connections, and one for reading
fonts). Sixteen is not a tolerable limit on the total number of (sub)windows, however.

4.3BSD lifts this limit to sixty four. (It can be configured to any size.) While this increase in
the number of file descriptors is beneficial, it is still too expensive a resource to use one per window.

Terminal Emulation

The current terminal emulator for X (xterm) is a client application, in principle similar to any
other application. In practice, xterm is probably the most complex and least graceful part of the
package. Pseudo teletypes (hereafter called pty's) are used to implement this in 4.2BSD. As
currently implemented, ptys consist of a device driver which presents a terminal on one side and a
master controlling device on the other side. Data is looped back from one side to the other, with full
terminal processing occurring <tab expansion, cooked/raw mode, etc.)

These present a number of problems: I) pty's are a limited resource. Typical systems have 16
or 32 ptys. On a single user machine, this limit is seldom reached, but on a timesharing machine it
can be inconvenient. 2) Since they appear statically in the file system, protection on the tty/pty
pairs can be a problem. A previous process that terminates unexpectedly can leave the pty in an
incorrect state. Xterm is the only application that must run set user id to root to guarantee it can
make the tty/pty pair properly accessible and to set ownership on the slave to the user.

The net result is that xterm is the most UNIX dependent <and least likely to port between
UNIX implementations) of any of the X clients currently existing. Dennis Ritchie's [3] stream
mechanism appears to eliminate most of these problems by allowing stacking of terminal processing
on IPC.

Window System Initialization

Most displays capable of running a window system bear little resemblance to UNIX's model
of a terminal connected by a serial line. Current display hardware may require involved initializa
tion before it is usable as a terminal, and may have an interface that looks nothing like the

- 94 -

conventional view of a serial device. As soon as the window system is running, however, it is easy to
provide a terminal emulator to a user.

Unix currently realizes someone has logged out by the eventual termination of the process
started by init(S}. [nit is also the only process which can detect when an orphan process terminates,
so the restart of a terminal line (or window system) after logout can only be performed by init.

The solution taken to support X (or Andrew, which has a similar structure) was to generalize
init. Getty(S} or (in X's case, xterm) now opens and revokes access to a terminal or pty rather than
init. The format of the /etc/ttys file, already extended at Berkeley, was further extended to allow
the specification of an arbitrary command to be run as getty. For X, this would normally be the
terminal emulator. [nit will also restart an optional window system server process associated with
the pty. [nit must start this process, since init is the only process in UNIX that can detect its exit.
The initial xterm can not be started from a window system server, since the server must exist all the
time, and init has to know the process id in order for it to detect the login process has terminated.
The X server process itself opens the display device and performs whatever initialization may be
required (for example, the Vs100 requires loading with firmware stored in a file).

Once xterm starts execution, it exec's getty on the slave side of the pty, and a user can log in
normally. When the user's shell exits, xterm exits, and init can then detect the user has logged out
normally.

[nit can now be used to guarantee that a process will be kept running despite failures as long
as the system is multi-user. Another approach not seriously examined would have made it possible
for an orphan process to have a parent other than init.

Resource Location and Authentication

At this time, UNIX lacks good network authentication and resource location. The only exam
ple of a real name server in widespread use is the internet name server. As UNIX moves toward a
distributed systems environment, questions of distributed resource location become important. X at
this time does little to solve this problem, relying on either command line arguments or an environ
ment variable to specify the host and display you want the application to use. In reality, it should
be closely tied to the user's name, since the name of a machine is basically irrelevant as users often
move. X seems to highlight some issues in the future design of such servers that may not be widely
appreciated.

The model used to best describe distributed computing goes under the name of the
"client/server" model. That is, a client program connects to a "server" which provides a service
somewhere in the network. The additional twist is that the window system is a "server" in this
model, and other network services may become "clients" of the X server. For example, one can
envision using services that want to interact with the user's display. The result is that the "name"
of the X server must somehow propagate through such service requests, along with whatever authen
tication information may be required to connect the X server in the future. This "cascaded" ser
vices problem has not been well explored.

The access control currently in X requires no authentication, but is only adequate for worksta
tions, and fails badly in an environment which includes timesharing systems. X can be told to only
accept connections from a list of machines. Unfortunately, if any of them are timesharing
machines, and you allow access from that machine, then anyone on that machine may manipulate
your display arbitrarily. This has the unfortunate side effect of making it trivial to write password
grabbers (across the net!) or otherwise disturb the display if access is left open.

The "name" of the user's display server also comes and goes with some frequency, as each
time you log out, any previously authenticated connection information needs to be invalidated, so no
background process from a previous user will disturb the user's display. It is also not uncommon
that a single user may use multiple displays, possibly on multiple machines simultaneously. This
might be common, for example, in a laboratory environment. Interesting questions arise as to which
display to use on what machine. (For example, the user may initiate a request on a black and white

- 95 -

display that really works better on a color display; which display on what machine should be used?)
We do not believe these issues, in particular the transient and cascading nature of such display ser
vices and authentication information, have been properly taken into account in the design of
resource location and authentication servers.

Stub Generators and the X Protocol

The X protocol is not a remote procedure call protocol as defined in the literature [4,5], as
client calls are not given the same guarantee of completion and error handling that an RPC protocol
provides. The X protocol transports fairly large amounts of data and executes many more requests
than typically seen in true RPC systems. Given this generation of display hardware and processors,
X may handle greater than 1000 requests/second from client applications to a fast display.

X clients only block when they need information from the server. Performance would be
unacceptable if X were a synchronous RPC protocol, both because of round trip times and because
of system call overhead. This is the most significant difference between X and its predecessor W,
written by Paul Asente of Stanford University. On the other hand, a procedural interface to the
window system is essential for easy use. We spent much time crafting the procedure stubs for the
several library interfaces built during X development.

The original implementation of the client library would always write each request at the time
the request was made. This implies a write system call per X request. There was implicit buffering
from the start in the connection to the server due to the stream connection. Over a year ago, we
received new firmware for the VsI00, and were no longer able to keep up with the display. We
changed the client library to buffer the requests in a manner similar to the standard I/O library;
this improved performance dramatically, as the client library performs many fewer write system
calls.

Many current RPC [6] argument martialing mechanisms perform at least one procedure call
per procedure argument to martial that argument. This is almost certainly too expensive to use for
this application. Even if martialing the argument took no time in the procedure, the call overhead
would account for -10% of the CPU. Stub generators need to be able to emit direct assignment
code for simple argument types. Complex argument types can probably afford a procedure call,
but these are not common in the current X design.

Proper stub generation tools would have saved several months over the course of the project,
had they been available at the proper time. Arguments could be made that the hand-crafted stubs
in the X client library are more efficient than machine generated stubs would have been. On the
other hand, to keep the protocol simple, X often sends requests with unused data, for which it pays
with higher communications cost. It would be instructive to reimplement X using such a stub gen
erator and see the relative performance between it and the current mechanism.

Machine dependencies in such transport mechanisms need further work. The protocol design
deserves careful study. Issues such as byte swapping cannot be ignored. With strictly blocking
RPC, the overhead per request is already so high that network byte order is probably not too expen
sive, given the current implementation of RPC systems on UNIX. With the higher performance of
the X protocol, this issue becomes significant. It is desirable that two machines of the same archi
tecture pay no penalty in performance in the transport protocols. Our solution was to define two
ports that the X server listens at, one for VAX byte order connections, and one for 68000 byte order
connections. At a late stage of X development, after X client code had already been ported to a
Sun workstation and would interoperate with a VAX display, another different machine architecture
showed that the protocol was not as conservatively designed as we would like. Care should be taken
in protocol design that all data be aligned naturally (words on word boundaries, longwords on long
word boundaries, and so on) to ensure portability of code implementing them.

X would not be feasible if round trip process to process times over TCP were too long. On a
MicroVAXt II running Ultrix*, or on a VAX 111780 running 4.2, these times have been measured
between 20 and 25 milliseconds using TCP. As this time degrades, interactive "feel" becomes worse,

t vAX is a trademark of Digital Equipment Corporation.

- 96 -

as we have chosen to put as much as possible in client code. Birrell and Nelson report much lower
times using carefully crafted and tuned RPC protocols on faster hardware; even extrapolating for
differences in hardware, UNIX may be several times slower than it could be. Given a much faster
kernel message interface, one should be able to improve on the current times substantially. The X
protocol requires reliable in order delivery of messages.

The argument against using such specific message mechanisms are: I) the buffering provided
by the stream layer is used to good advantage at the server and client ends of the transmissions. 2)
Less interoperability. X has been run over both TCP and DECNET, and would be simple to build a
forwarder between the domains if needed. This reduces the number of system calls required to get
the data from the kernel at either end, particularly when loaded.

These times have been improved somewhat by optimizing the local TCP connection, and could
be further improved by using UNIX domain connections in the local case.

In general UNIX needs a much cheaper message passing transport mechanism than can
currently be built on top of existing 4.2BSD facilities. Stub generators need serious work both for
RPC systems and other message systems particularly in light of some of the issues discussed above.
We would make a plea that there be further serious study of non-blocking protocols[71 There
should be some way to read multiple packets from the kernel in a single system call for efficient
implementation of RPC and other protocols.

Select and Non-blocking I/O

Without select(2), building X would have been very difficult. It provides the only mechanism
in UNIX for multiplexing many requests in a single process. It is essential for the X server to be
able to block while testing for work to do on any client connection and on the keyboard device. X
will then wake up with the information required to determine which device or connection needs ser
vice.

In actual interactive use of X on a very fast display, select accounts for both the most CPU
time and the most subroutine calls. Over an afternoon's use on this display, it accounted for more
than 20% of the CPU time used. This is not surprising, since most use of the window system is gen
erated by input events going to editors (in our environment), and output character echoing as well
as clock and load monitor graphics calls. When not loaded, one would expect on the order of one
select call per X request performed. In fact, there are approximately two X requests performed per
select call.

One should remember that select's overhead diminishes as the load on the window system
increases, both because you are likely to have many requests on a single connection, and because
multiple connections may be processed on a single call. Profiling of the server when the display is
loaded shows select using a much smaller percentage of the total CPU time.

Note that for the typical case under normal use, TWO system calls will be occurring where
one might potentially do. In the output case {from a client>, X will be blocked in select awaiting
input (one call). It must then read the data from the client and process it (second call). Due to the
shared memory described above, we are avoiding a write system call to the display. On input (key
board or mouse), X will be blocked in select (one call). It then gets the input event out of the
queue, determines which client should get the event, and writes it (second call). Again, we have
saved a system call to read the data. Note that since buffering may occur on both input and output,
the overhead per graphics operation performed will diminish as the load on the server goes up, since
the server will perform more work for the same amount of overhead.

Optimally, select should be very cheap. On fairness grounds, one would like to see if more
input from a different client is available after each X request. The original X request handler
would check after every request for more requests. The current scheduler only checks for more
input when all previously read data has been processed, and provides an approximately 30% reduc
tion in X server overhead (all in the select and read system calls).

*Ultrix is a trademark of Digital Equipment Corporation.

- 97 -

Summary

The current UNIX kernel implementation is quite infle"ible, closing off what might be
interesting design choices. Lightweight processes both in the kernel and in user processes could be
used to good advantage. The kernel is not properly structured to allow easy use of different facili
ties together. Streams may be a decent first step in this direction.

Stub generators, message passing and RPC transport protocols all need substantial work as
UNIX moves into the distributed world. Using these protocols without stub generators is like a day
without sunshine.

Resource location, authentication and naming are issues UNIX has not faced in the distributed
environment. Cascaded services present another level of issues which need to be faced in their
design.

UNIX has ASCII terminals ingrained into its very nature. It will take much more work to
smooth the rough edges emerging from the forced marriage of workstation displays with UNIX.

If a system resource is in short supply (as file descriptors are), the correct solution is to lift the
limit entirely. Doubling or tripling a limit on a resource only delays the day of reckoning, while still
preventing those design strategies that found them in short supply originally.

Shared memory should allow sharing of memory between processes, between the kernel and a
process, and between a process and hardware. Shared libraries would open up design opportunities.

More work needs to be done on performance of some of the new kernel facilities. The X
server uses select more heavily than any other system call, accounting for the largest single com
ponent of CPU time used, though select is not the limit in absolute performance.

Acknowledgements

Without Bob Scheifler of MIT's Laboratory for Computer Science, there would be no X win
dow system.

The list of contributors is now too long for an exhaustive list, and includes Paul Asente, of
Stanford University, Mark Vandevoorde, Tony Della Fera, working for Digital at Project Athena,
Ron Newman of Project Athena, the UNIX Engineering Group and the Workstations group of Digi
tal. My thanks also go to Sam Leffler, Steve Miller and Noah Mendelsohn for helpful comments
during the writing of this paper. My thanks also go to Branco Gerovac for Figure 1.

References

[1l Gosling, J. and Rosenthal, D. "A Window-Manager for Bitmapped Displays and UNIX," to
be published in Methodology of Window-Managers. F. R. A. Hopgood et al (eds) North
Holland.

[2] Newman, R., Rosenthal, D., Gettys, J. "User Extensible Streams," In preparation.

[3] Ritchie, D. M., "A Stream Input-Output System," AT& T Bell Laboratories Technical Jour
nal, Vol. 63, No.8, Part 2, pp. 1897, October 1984.

[4] Birrell, A. D. and Nelson, B. J., "Implementing Remote Procedure Calls," Transactions on
Computer Systems, vol. 2, no. 1, February 1984.

[5] Nelson, B. J., "Remote Procedure Call," Technical Report CSL-81-9, Xerox Palo Alto
Research Center, 1981.

[6] "Sun Remote Procedure Call Specification," Sun Microsystems, Inc. Technical Report 1984.

[7] Souza, R. J. and Miller, S. P., "UNIX and Remote Procedure Calls: A Peaceful Coex
istence?," Project Athena Internal Paper, 1985.

SUNDEW: A Distributed and Extensible Window System

James Gosling

Sun Microsystems

ABSTRACT

SUNDEW is a distributed, extensible window system that has arisen out of an
effort to step back and examine various window system issues without the usual
product development constraints. It should really be viewed as research into the
right way to build a window system. The key unique feature of SUNDEW is the
ubiquitous use of an extension mechanism. The extensibility of the system has pro
ven to be crucial to its functioning well in a distributed environment. Performance
is enhanced through closer interaction between client and server; data compression
on the communication channel can be done in an application-specific way; semantic
issues are cleared up by having a centralized authority; and user interface changes
are easier to make.

The paper is organized as two parts. The first provides some background to
motivate the design of SUNDEW, and the second presents the design. Several
aspects of the design are rather unusual, and hence need a lot of motivation.

1. Background

There is a wide range of flexibility in window systems. On the one extreme are systems like
Andrew 1 and the Macintosh2 where essentially nothing can be changed in either the user or pro
grammer interface. In the middle are systems like X3 which have provisions for new menu packages
or new layout managers, but where the difficulty of exploiting the flexibility is fairly high. At the
other end are totally open systems like Smalltalk4 where it is fairly trivial for a skilled user to
modify parts of the system's behavior.

Take as an example what you must do to change the background grey pattern on the window
system's desktop. On the Mac, this is easy because someone thought to include it as a configuration
option. On the other hand, if the scrollbar grey needs to be changed, you're stuck. With Andrew,
since changing the background grey isn't a configuration option you're stuck unless you can get at
source. X is somewhat better since it is more broken up, but you're still faced with rebuilding a
large part of the system. Smalltalk makes it fairly easy since the component of the window system
that deals with the background grey is small and well-contained and can be replaced incrementally
without disturbing the things around it. The hard part is finding out which piece to replace and
what its specification is. Smalltalk systems generally have the full source available along with a
powerful browsing facility: this makes the task possible and easy, but only for a skilled person.

Window systems have a wide range of complexity in their user interfaces. Some, like the
Macintosh, have very simple and clean interfaces that are easy for novices to learn. The Andrew
window system has a very simple style that is easy to teach, easy to use, and easy to document; but
this simplicity comes at the cost of a more rigid system. In some window systems experienced users
find that all the help and menu interaction can get in the way, so at the other end of the scale are
systems that are tuned to expert use but which novices find hard to learn. Systems are rarely at one
of these extremes: they usually have accelerators for expert users or simple menu interfaces for
novices. The one thing that is clear is that no interface style is satisfactory or even adequate in all
situations.

- 99 -

Similar comments can be made about the programming interfaces to window systems. Simple
interfaces often make unusual operations difficult; it can become necessary to take pliers to the
beast and bend it in unintended directions. For instance, in the Andrew system, direct program
manipulation of bitmaps is almost impossible. In the SunWindowss system it is impossible to avoid.
Powerful interfaces tend to be baroque. This is partly an inherent problem, and partly due to the
tendency of systems to accrete features as they mature. The best compromise seems to be an inter
face that can be viewed in parts, starting out at a simple but complete base, and having complexity
that can be incrementally learned.

Another sort of flexibility that varies widely between window systems is their device indepen
dence. Many window systems start out being intended for a particular technological base, and the
assumptions built into that base often creep into the higher levels of the design. A common problem
is the use of the 'bitblt' graphics model. While this deals fairly well with monochrome displays, it
doesn't extend in a clean and useful way to color. Boolean combination functions between color
pixel values don't make much sense. For instance, one often draws transient rubber band lines by
XORing them with the image. XORing color map indices can lead to some pyrotechnic effects.

Most window systems are initially built for a particular piece of hardware. Decisions tend to
be made less in favor of what is 'right' and more in favor of what fits in with the hardware at hand.
A good example of this is the X window system. It has been going through substantial growing
pains as it has developed. X started life as a window system for VAXes with VS100 displays. The
communication protocol between the X server and client programs was based on C structures, whose
internal representation was very VAX-specific. It also started out using the VS 100 font format.
Unfortunately, the VSIOO font format has some major technical problems, and the VAX C struc
tures don't map well to other machines. The process of cleaning out these VAX-specific aspects has
taken quite a while.

Andrew is a good example of a window system that was designed without a specific piece of
hardware in mind. This was an accident of the political situation at the time it was being written:
the hardware that it was being designed for didn't exist, hadn't really been designed, was being
designed in relative isolation from the design of Andrew, and, in fact, there were several display
designs going on simultaneously. Andrew was designed for a black box; all that was known about
the eventual system was that it would run some kind of Unix and that it would have some kind of
bitmap display. At the time, this was a very painful situation, but in retrospect, it was a great bless
ing.

The correct choice of a graphics model is crucial to achieving device independence. The more
abstract the model, the more room there is for the underlying implementation to accommodate dif
ferent technologies. For example, consider the representation of color. There are three common
ways that color is represented in display devices: I-bit black and white (constant small set of colors);
8-bit color with a colormap (variable small set of colors); and 24-bit color (all possible colors avail
able everywhere). Integrating the views of color that these three implementations present is a very
hard but important problem.

The choice of a graphics model has a strong impact on the usefulness of the window system
for doing graphics. Many systems provide only rasterop, vector drawing, and simple text. On the
other hand, systems like the Macintosh which have a much richer graphics model, have a flair for
much more graphically interesting applications. This is a balancing act: richer models are more dif
ficult to implement and more difficult to understand.

In the kind of distributed networked environment that Sun promotes, it is natural to want to
be able to access windows on another machine as naturally as the Network File System supports
accessing remote files. The experiences with Andrew and X have shown that the flexibility that this
allows in the choice of where a client program runs is very valuable. Non-networked systems like
Smalltalk or SunWindows have, by contrast, a very closeted feeling.

- 100 -

2. The Design

SUNDEW is based on a novel sort of interprocess communication. Interprocess communication
is usually accomplished by sending messages from one process to another via some communication
medium. Messages are usually a stream of commands and parameters. One can view these streams
of commands as a program in a very simple language. What happens if this language is extended to
being Turing equivalent? Programs don't communicate by sending messages, they communicate by
sending programs that are elaborated by the receiver. This has interesting effects on data compres
sion, performance and flexibility.

The POSTSCRIPT programming language defined by John Warnock and Charles Geschke at
Adobe Systems is used in just this way.6 What Warnock and Geschke were trying to do was com
municate with a printer. They transmit programs in the POSTSCRIPT language to the printer that
are elaborated by a processor in the printer, and this elaboration causes an image to appear on the
page. The ability to define a function allows the extension and alteration of the capabilities of the
printer.

This idea has powerful implications within the context of window systems: it provides a grace
ful way to make the system much more flexible, and it provides some interesting solutions to perfor
mance and synchronization problems. For example, if you want to draw a grid, you don't have to
transmit a large set of lines to the window system, you just send down a loop. Downloading pro
grams to the server is not just a nice feature that has been tacked on: it's an integral part of the
window system.

POSTSCRIPT is the extension language used by SUNDEW. It is a clean and simple language, it
has a well-designed graphics model, and it is compatible with most of the printers that Sun supports.

SUNDEW is structured as a server which contains a POSTSCRIPT interpreter. Within this server
process is a collection of lightweight processes that execute POSTSCRIPT and C programs. Client
programs talk to SUNDEW through byte streams (4.2 BSD sockets>. Each of these streams gen
erally has a lightweight POSTSCRIPT process within the SUNDEW process that executes the stream.

SUNDEW server
keyboard

display

Messages pass between client processes, that exist somewhere out on the network, and
POSTSCRIPT processes that exist within the SUNDEW server. These processes can perform opera
tions on the display and receive events from the keyboard. They can talk to other POSTSCRIPT
processes that may, for example, implement menu packages.

Everything in SUNDEW is centered around POSTSCRIPT as an extension language. All that is
provided by SUNDEW is a set of mechanisms; policies are implemented as POSTSCRIPT procedures.
For example, SUNDEW has no window placement policy. It has mechanisms for creating windows
and placing them on the screen given coordinates for the window. The choice of those coordinates is
up to some POSTSCRIPT procedure.

What is usually thought of as the user interface of a window system is explicitly outside the
design of this window system. User interface includes such things as how menu title bars are drawn
and whether or not the user can stretch a window by clicking the left button in the upper right hand

- 101 -

corner of the window outline. All these issues are addressed by implementing appropriate pro
cedures in POSTSCRIPT.

The rest of this paper presents SUNDEW in four parts: the imaging model, window manage
ment, user interaction, and the client interface. The imaging model refers to the capabilities of the
graphics system - the manipulation of the contents of a window. Window management refers to
the manipulation of windows as objects themselves. User inte"raction refers to the way a user at a
workstation will interact with the window system: how keystrokes and mouse actions will be handled.
The client interface defines the way in which clients (programs) will interact with the window sys
tem: how programs make requests to the window system.

2.1. Imaging

Imaging in SUNDEW is based on the stencil/paint model, essentially as it appears in
Cedar/Graphics? and POSTSCRIPT. A stencil is an outline specified by an infinitely thin boundary'
that is piecewise composed of spline curves in a non-integer coordinate space. Paint is some pure
color or texture - even another image - that may be applied to the drawing surface. Paint is
always passed through a stencil before being applied to the drawing surface, just like silkscreening.
This is the total model: lines and characters can be defined using stencils. Lines are done as narrow
stencils. Underneath it all, it isn't really done this way: special cases are exploited wherever possi
ble. One can think of a stencil as a clipping region. Stencils may be composed by union, intersec
tion and difference to create new stencils.

One of the attractive characteristics of this imaging model is its very abstract nature. For
example, the definition of a font allows many implementations: as bitmaps, as pen strokes, or as
spline outlines. No commitment is made about exactly which pixels are affected, or even that there
are pixels at all. The extension of the system to deal with anti-aliasing will not affect the interface.

The specification of this model is simple and elegant, but the way in which its various features
can be combined leads to a very tricky implementation. For example, the mechanism for specifying
a stencil allows straight lines, arcs and higher order curves to be a part of its boundary. Stencils
can be used both for clipping and for filling. This implies that it must be possible to compute the
intersection of curved boundaries. This is difficult, but possible, to do fast.

The work done by Vaughan Pratt on Conic Splines provides'a fast way to deal with the gen
eration of curves.8 A further set of algorithms for putting these curves together and dealing with the
various operations on shapes that results has been developed.9

2.2. Window management

The basic windowing object is something called a canvas. This nonstandard term was picked
to avoid the semantic confusion that surrounds the word 'window'. A canvas is just a surface on
which an image may be drawn. A set of canvases, called a scene, can be laid out in three dimen
sions on a display surface. The actual implementation of canvases depends heavily on the graphics
package described in the previous section. Each canvas is made up of two parts: one on the screen,
and one not. By playing with these two parts one can get double-buffered, retained and non
retained behavior.

Canvases are cheap and easy to create. Menus, windows and pop-up messages are all based on can
vases. POSTSCRIPT has been extended with primitives to create and manipulate canvases. All
POSTSCRIPT graphics operations are performed on some canvas.

- 102 -

2.3. User interaction - Input

Each possible input action is an event. Events are a general notion that includes buttons going
up and down <buttons may be on keyboards, mice, tablets, or whatever else) and locator motion.

Events are distinguished by where they occur, what happened, and to what. The objects spo
ken about here are usually physical, they are the things that a person can manipulate. A example
of an event is the 'E' key going down while the mouse is over canvas x. This might trigger the
transmission of the ASCII code for E to the process that created the canvas. These bindings
between events and actions are very loose; they are easy to change.

The actions to be executed when an event occurs can be specified in a general way, via
POSTSCRIPT. This strongly resembles the squeak language, with lightweight processes replacing
concurrency compilation. to The triggering of an action by the striking of the 'E' key in the previous
example sends a message to a POSTSCRIPT process that is responsible for deciding what to do with
it. It can do something as simple as sending it in a message to a Unix process, or as complicated as
inserting it into a locally maintained document. POSTSCRIPT procedures control much more than
just the interpretation of keystrokes: they can be involved in cursor tracking, constructing the bord
ers around windows, doing window layout, and implementing menus.

2.4. Client interface

A client program exists in two parts: one that is written in POSTSCRIPT and lives inside SUN
DEW, and one that lives outside SUNDEW and talks to it through a byte stream. This leads to a
number of levels at which the client interface can be viewed. At the lowest level, the programmer is
writing POSTSCRIPT programs and is dealing with an entirely POSTSCRIPT universe. Menu pack
ages and window layout policies are examples of objects that will usually be implemented this way.

One step above that, the programmer is writing programs in C, or some other language, that
write POSTSCRIPT programs - the programmer is explicitly aware of the existence of POSTSCRIPT.
SUNDEW emulators for other window systems are generally implemented this way.

The highest level, and the one at which most programmers deal, the existence of POSTSCRIPT
and message passing is completely hidden by an interface veneer. The flexibility of POSTSCRIPT
allows this veneer to have many possible appearances: it can emulate other window systems like X or
Andrew.

3. An Example

This example defines a POSTSCRIPT function that pops up a message on the screen under the
mouse and removes the message when the user clicks a mouse button on it.

Ipopmsg { { HighlightFont setfont
dup stringwidth pop 15 box
createcanvas setcanvas
o 3 moveto show
currentcanvas currentlocator movecanvas
IMouseButtonUp enableevent
waitevent

} fork pop
} def

POSTSCRIPT is a completely postfix language. There is an operand stack from which arguments are
taken and onto which results are pushed. Literal numbers like 0, and literal names like Ipopmsg
are just pushed on the stack. Names which correspond to variables, like HighlightFont, have their
values pushed onto the stack. The construction '{stuff}' defines a program block whose contents is
stuff Ipopmsg t..} def defines the function popmsg by first pushing the name popmsg on the stack,
then a program block, then calling de! to define the function based on these two arguments.

- 103 -

Setfont takes a single argument, a font, and makes it be the current font. Popmsg is written to take
a single string argument on the top of the stack. Dup duplicates this argument and stringwidth cal
culates its width. Pop throws away the y component of the width. Box uses the width and 15 to set
the current path to be a box with those dimensions. Createcanvas then creates a canvas of that
shape, which is installed as the current canvas by setcanvas. 0"3 moveto show moves to the starting
position of the string and draws it. currentcanvas currentlocator movecanvas draws the canvas on
the display positioned by the mouse. The MouseButtonUp event is then enabled and waited for.
This whole block of code is run as a separate process so that it doesn't block the rest of the system
and so that its canvas and font get cleaned up automatically when the mouse is clicked. The pop
gets rid of the unwanted process handle.

4. Conclusion

Extensibility has proven to be very beneficial in the construction of a distributed window sys
tem. It can be used to improve both the effective bandwidth and latency of the communications
network. The bandwidth improves by tighter encoding of the operations and the latency improves
by reducing the number of situations where messages need to be sent. The flexibility it provides,
even in a non-distributed environment, allows a clean separation of policy and mechanism, which
aids in user interface design.

I. David Rosenthal and James Gosling, "A Window Manager for Bitmapped Displays and
Unix," in Methodology of Window Managers, ed. F. R. A. Hopgood et al., North Holland
(To be published).

2. C. Espinosa and C. Rose, QUickDraw: A Programmer's Guide. Apple Computer (March,
1983) .

3. James Gettys, "Problems Implementing Window Systems in Unix," Usenix Proceedings
(January, 1986).

4. Adele Goldberg and David Robson, Sma//talk-80: The Language and Its Implementation,
Addison-Wesley (May, 1983).

5. Programmer's Reference Manualfor SunWindows, Sun Microsystems (April, 1985).

6. POSTSCRIPT Language Reference Manual, Addison-Wesley (July, 1985).

7. John Warnock and Douglas Wyatt, "A Device Independent Graphics Imaging Model for Use
with Raster Devices," Computer Graphics 16(3) (July, 1982).

8. Vaughan Pratt, ~~Techniques for Conic Splines," Siggraph Proceedings (July, 1985).

9. James Gosling, "If the Earth is Round, Why is the Sun Square," Usenix Workshop on Com
puter Graphics (December, 1985).

10. Luca Cardelli and Rob Pike, "Squeak: A Language for Communicating with Mice," Siggraph
Proceedings (July, 1985).

UNIX on Big Iron

January 16, 1986

Denver, Colorado

User Requirements for UNIXt on "Big Iron"

E. N. Miya

Computational Research Branch
NASA Ames Research Center

Moffett Field, CA 94035
eugene@ames-nas.ARPA

UUCP: {ihnp4,hplabs,hao,decwrl}!ames!amelia!eugene

ABSTRACT

The UNIX operating system was developed during an unusual period when mini
computers were prominent. This is the source of many problems hampering the
scale-up of the system. Some historical perspective is useful for determining
near-term and far-term problem areas of UNIX running on large-scale systems
including multiprocessors, increased file system size, new performance criteria,
and the like.

Recently, a user was asked 'what will the operating system of the 22nd Century would look like'
He said, ItI don't know what it will look like, but it will be called UNIX."

>From an anonymous computer rag in the year 2085.

Introduetory Comments

The development of the UNIX operating system [1] was largely "user"-driven. Users, as his
tory has frequently shown, have tended to demand ever-increasing quantities of computer speed
and storage (typically at rates faster than o(n)). This placed a greater burden on UNIX to
operate in new and unintended environments. These environments were identified by Thompson
and Ritchie years ago in a now ancient (classical) issue of the Bell System Technical Journal:
e.g., multiprocessors, [2) high-speed input/output (I/O) devices, [31 and other realms. This
demand strains traditional resources like the file system.

It is ridiculous to think that file system size, for instance, should be bounded when there
exist requirements for greater speed and storage. Dennis Ritchie in his Turing award lecture [41
even mentions the possibly of "a future Ken Thompson finding a little used eRAY-lt ..." Ironi
cally, Ken and Dennis have just received a eRAY-X/MP.

The bottom line for any discussion of Big Iron? must be:

We must not sacrifice performance (either human or machine)!

The intention of this paper is to contrast the large-scale environment to the UNIX environment.
Specific features mentioned in the original Thompson and Ritchie paper [1] are briefly analyzed
from the large-scale perspective.

Big Iron

What constitutes "Big Iron?" The dividing line is difficult to draw: it is beyond a super
minicomputer, and less than a "mainframe." Both of these are vaguely defined terms. Many

J.UNIX is a trademark of AT&T Bell Laboratories.

+CRAY is a trademark of Cray Research, Inc.

-105-

new multiprocessors are composed of collections of microprocessors: they are certainly interest
ing. To avoid ambiguity, it is best to discuss user requirements at the high-end to understand
big iron requirements.

Supercomputers are defined as the fastest machines existing at a given point in (relative)
time. Supercomputer applications tend to have extreme requirements for both memory and
speed. These program c..a.nn.o.t trade time for space or vice versa. These applications are not
restricted to "scientific programming." Big-iron skeptics might question the above statement.
Fortunately, a popular, easy to understand example exists in computer graphics: making high
quality, "Lucasfilm" or "Star-Wars*" movies.

Consider the development of spatial resolution in computer graphics. Frame buffers
started with 256 by 256 pixel resolution. Color was added, so more bits were added. Next, spa
tial resolution increased from 256 pixels to 512 pixels per side, then to 1024 pixels, and now we
have 2048 pixels. Resolution increases (at a rate of 0 (n 2)), but aliasing problems still exist for
big screen cimena. Aliasing can only disappear with a combination of adequate resolution
(greater than 2048 pixels) and anti-aliasing techniques.

Note that the design of resolution went up linearly, but the storage requirements squared
with each linear increase. The execution time may similarly square. Suppose the film-maker
decides that 16K by 16K resolution is needed. Improving the resolution a factor of 64 (over 256
pixels) yields a 4096 fold increase in processing time and storage. The solution is to make the
execution time constant (ideal), linearly increasing, or at least, increasing at a manageable non
linear rate.

The motion picture example could easily generalize to an image or signal processing prob
lem, or even modeling the motion of air jspace craft. If realism is a goal, why not model more
than the surface characteristics using the real equations of motion? The processing here may
easily exceed 0 (n 3).

One computing faction says that large systems should be used in a "batch" mode.
Another faction says that interactive computing is the wave of the future. The batch
proponents argue the problem with interaction is the cost of interrupt handling is too expensive.
The interaction-proponents counter that the bulk of data is larger than the ability for humans
to comprehend. Interaction and graphics are now required to do large-scale computation.

The reality will probably come with a middle ground, perhaps, a transaction type of dis
tributed system with some local interactive processing and more powerful remote facilities.

UNIX?

Our perspective might be a little different if Bell Labs had approved Thompson and
Ritchie's request for a DECSYSTEM-IO or if they had used an Interdata 8/32 for their first
CPU. The UNIX operating system was developed on minicomputers: now an uncommon backwa
ter of computing. The design span of minicomputers was short, and it cast an uncommon per
spective. The microcomputer community sees UNIX as an operating system for "big" machines,
and the mainframe environment sees UNIX as a system for "small" machines. Nobody is design
ing 16-bit minicomputers any more. Our problem comes from the terminology (prefixes really)
of computing. Technology overpowered terminology.

Another problem is that microcomputers are gaining more computing power and catching
up to if not exceeding the power of many past mainframes. Cycle time improves first. The next
area is memory hierarchy. Storage requirements are beginning to drive computer requirements
as much as speed which in turn requires more speed to process the large memories. Big disks in
1970 were measured in the tens of Megabytes. Big mass-storage is now measured in the

"Lucasfilm and Star-Wars are probably trademarks of Lucasfilm, Ltd.

-106-

terabytes.

The fundamental debate regarding the use of large expensive computers raises a question
Crom non-UNIX people:

Is an opel'ating system designed for yesterday's 16-bit mini-computer appropriate for the 64-bit
supercomputers of today and/or the 64-bit ultra(?) micros of tomorrow (having gigaword address
ing and teraword secondary storage)?

This question can be broken into several subproblems: reliability, economy of scale, and
existing problems.

Computational reliability is one concern. Today's fault-tolerant computers are adequate
for the jobs for which they are designed: transaction and switching systems. Computation
designed to run a lifetime (Le., the set of all computations for which the answer is 42) need some
restart facility without extensive user coding. Computation of this type is becoming more fre
quent in the engineering and science domains.

The scale- up in both hardware and software is probably the most difficult issue to address.
Is an operating system for 1 to 4 CPUs adequate for 16? for 100? for 1,000? or for 1,000,000
CPlJs?

On a more technical level, how closely will the operating system kernels of today match
those of 20 years from now? [Le., UNIX the FORTRAN of operating systems] Will the functional
ity be identical? Will UNIX run on radical data flow architectures? 'Nill UNIX run on the CRAY
(or 370) on a desk? On the wrist?

Every UNIX programmer has his or her own set of gripes: better I/O, problems with small
critical sections, and so forth. The remainder oC this paper brieHy surveys these problems from
the perspectives of the original six features that made UNIX popular.

A Review of Six Features

It is said that no single feature accounts for the popularity of UNIX, but rather, in the
combination of these six features mentioned by Thompson and Ritchie in their seminal paper: [1]

A hierarchical file system incorporating demountable volumes
Compatable file, device, and inter-process I/O
The ability to initiate asynchronous processes
System command language selectable on a per-user basis
Over 100 subsystems including a dozen languages
High degree of portability

The issues facing the UNIX operating system are prefaced in the light of these six features.
These features have sometimes succeeded, while in other cases, they have reached limitations far
beyond the minicomputer environment for which the system was developed. The following sec
tions summarize the apparent success and future problems faced by each UNIX feature.

Portability

High degree of portability -
Clearly successful, but ...
System portability/high-level language -- Yes
Applications portability -- less so

Portability is mentioned first because it is the first issue any new UNIX implementation
faces. There is beauty in system portability, and the degree of UNIX portability cannot be ques
tioned as this is the first operating system to be suggested as a standard. No other operating
system can yet make the claim that it spans the smallest to the largest machines.

OUf first concern involves getting the operating system running on a new piece of
hardware. The second concern involves moving soft\\"are tools and running applications. \Ve

-107-

have amassed significant quantities of experience with the former. A programmer can open(2) a
file (Le., dataset if you come from the IBM-world) regardless of the underlying hardware. The
latter is still a major problem.

Porting an application involves analysis of the intended operating environment. Program
ming environments and languages are made much less portable if the operating environment
differs significantly between machines. The different non-UNIX ways of opening files require a
slew of different source code and job control language changes. UNIX should standardize this.

So then, why are C portability classes and discussions suddenly cropping up? Is C less
portable than tauted? Probably. It is now used in a wider variety of environments than prob
ably intended. Consider these novel environments:

l6-bit, NlrXI (reversed word) systems
32-bit, XINU systems (reversed byte-patterns)
36-bit, word-oriented Univacs
64-bit, byte oriented CDC systems
64-bit, word-oriented CRAY
and other systems

Symptoms (features?) of non-portable code are includes and conditional compilation. The
reader is given an exercise of considering some of the features which might appear in the follow
ing header files or machine specific code blocks:

#ifdef CRAY
#include <cray.h>
ifdef CRAY2
#include <cray2.h>
ifdef IBM370
#include <ibm370.h>
ifdef IBM3090
#include <ibm3090.h>
#ifdef ullOO
#inelude <ullOO.h>
ifdef iPSC5d
#inelude <iPSC5d.h>
#ifdef iPSC7d
#inelude <iPSC7d.h>

#include <4.2.h>
#ifdef 4.2BSD
#inelude <SV.2.h>
#ifdef SV.2

Ideally, code should not need any of the above conditions, but the reality is that we can expect
more statements of this type to appear as we explore architectural diversity in the future.
Currently, we can only try to isolate machine dependencies.

File System

A hierarchical file system .. Largely successful, but ...

Success: the simplicity of the UNIX file system is helpful although many future UNIX-users
do not fully appreciate this fact. There are four main issues: capacity, performance, structure,
and reliability. The UNIX community must quickly address the issue of file system capacity. File
system organization is not an immediate issue, but capacity limitations, large-scale I/O perfor
mance, and reliability are issues. Dennis Ritchie's advice [5] in the use hierarchical file systems
was heeded by developers of new operating systems. Performance is covered in the next section.

-108-

Reliability is given considerable attention by the business community. This leaves capacity.

There are applications where a 16-gigabyte file space is not adequate. It is not simply a
matter of saying that hydrodynamics is a special application or that users should use many
small files. On a gut-level, the high-resolution Star Wars images are an example, again. 16K
pixels per side represents 256 M pixels (words) total image for a composition. 'Cat'-ing pieces of
an image together is a joke. The original developers of computers never thought there was
much use for computers with greater then 8 Kwords of memory. We must not make their mis
take.

One last thought regarding structure. Simple hierarchies may not have enough structure
for organizing vast quantities of data. Scientific database systems are lacking in particular.
Our imperfect movie analogy breaks down with its mostly pure sequential structure. This
author is unable to comment on business database systems, but their requirements are probably
also severe. Some compatibility between these supplementary organization schemes requires
consideration.

Compatible I/O

Compatable file, device, and inter-process I/O -- Successful in principle, but

Ken Thompson [3] noted the potential inadequacies of the UNIX file system and I/O in his
Bell System Technical Journal paper on implementation. Low latency devices, Thompson noted,
would be problems. Devices with low latency like RAM-disks are now on the market. While the
overall issue of compatible I/O was important, the issue of some degree of performance was also
important.

Several non-UNIX operating systems, noteably Cray's and CDC's, have used disk striping
across spindles as a means of increasing disk I/O, but this technique has reached its limit. It is
understood that some microprocessor users are considering this technique for higher disk
throughput. So high-end machines pave the way for their less expensive peers.

The next problem with I/O and the file system occurs with extremely large processes (e.g.,
our Star Wars movie again). Accessing files from disk is painfully slow. As the volume of data
increases, our capability to swap data out of secondary' storage has not kept pace with main
memory movement. This in turn has an effect on the UNIX scheduler which requires change
(swap time taking longer than a time slice). The reader should visualize extremely large
processes whose swap times might be measured in whole seconds. Partial swapping offers one
answer to this problem. There are likely to many side-effect problems of this type which will
affect UNIX.

Another major problem in the area of I/O is the increased use of high-speed communica
tion networks. Large-scale systems are rarely, if ever, used in a stand-alone mode. Large quan
tities of data need to be moved from remote storage units or data collection devices and
buffered (staged) for execution.

Software Tools

Over 100 subsystems including a dozen languages (software tools) -- Largely successful

There are two issues here: the tools that exist and those that need to be developed. The
business community thinks it needs a COBOL compiler. The scientific community does need a
better FORTRAN compiler with vectorization, multitasking, and other features.

In the first case, most end-users have amassed their own software tools. These require
porting a better FORTRAN or COBOL compiler or whatever language was used before. A
'better' compiler is an example of the second type of tool. Once this happens, the end-user
applications can follow. So there are a variety of obvious dusty deck related problems.

-109-

Remembering that user requirements increase with time, we can be certain that newer
software tools must incorporate things which were not a concern in the easiest days of UNIX:
better schemes for organizing data on top of the file system, more graphics tools, better
network/distributed systems communication. With the hundreds of tools floating within UNIX, a
navigation system would help the user to put tools together: a tool to help use tools.

Software tools on portable operating systems bring up some interesting issues. If company
X (using UNIX) develops in-house package Y, should this package run on company Z'S UNIX
machine? There is some tendency for a manufacturer to customize UNIX, its surrounding pack
ages, and the associated hardware as new features. This is the portability issue again. This is
a touchy area, since hardware companies make their money selling boxes, not software.

Shells

System command language selectable on a per-user basis -- Largely successful

The problems of obscure command naming are well documented. [6] Obscure command
names are typically not shell problems but utility-name problems that are distinct from specific
shells or system calls. The functional capabilities of most UNIX shells are unmatched by most
vendor operating systems. Thoughtful exposition on improving shell functionality is scarce. [7]

Users need a variety of more graphical and more intelligent (perhaps voice?) interfaces.
UNIX had its earliest origins on a graphics system and graphical interaction has a degree of
human-interaction that is unmatched.

Parallelism

The ability to initiate asynchronous processes (parallelism) -- Clearly successful

User-controllable parallelism became a issue when the Fifth-Generation Project announced
it would solve its problems using parallelism. Highly parallel systems appear to be the only
architectural way of increasing performance as designers reach the physical limits of semi
conductors: e.g., Silicon and Gallium. No further comment about this is necessary.

Conclusion

The UNIX operating system is unquestionably a successful system. To remain successful,
historical issues must now be addressed to increase performance and adapt to new environ
ments. This paper has outlined some of the areas where we may expect to see change to the
operating system.

References

[1] Dennis M. Ritchie and Ken Thompson, "The UNIX Time-Sharing System," Communica
tions of the ACM 17(7), pp. 365-375 (August 1974).

[2] J. A. Hawley and W. B. Meyer, "MUNIX, A Multiprocessing Version of UNIX," M.S. Thesis,
Naval Postgraduate School, Monterey, Cal. (1975).

(3] K. Thompson, "UNIX Time-Sharing System: UNIX Implementation," Bell Sys. Tech. J.
57(6), pp. 1931-1946 (1978).

[4] Dennis M. Ritchie, "Reflections on Software Research," Communications of the ACM
27(8), pp. 758-760 (August 1984).

[5] D. M. Ritchie, "UNIX Time-Sharing System: A Retrospective,t' Bell Sys. Tech. J. 67(6), pp.
1947-1969 (1978).

[61 Don A. Norman, "The Trouble with UNIX," Datamation 27(12) p. 139 (1981).

[7] Rob Pike, "Shells, features and interaction," net. unix 4676@alice.UUCP(17 Nov 1985).

~110-

Experience with Large Applications on Unix

Bob Bilyeu
McNeill-Schwendler, Inc.

Didn't make deadline. Copies Bvailable at the Co~ference.

UNIX Scheduling for Large Systems

Jeffrey H. Straathof, Ashok K. Thareja, Ashok K. Agrawala

Department of Computer Science
University of Maryland

College Park, MD 20742

ABSTRACT

*UNIX derives much of its power and versatility from its simple and elegant design.

While simplicity and elegance have been halhnarks of UNIX, there is an important aspect

of UNIX that does not exhibit these characteristics, Le., the UNIX scheduler. A close

examination of most implementations of UNIX reveals that the scheduling concepts are ad

hoc, cumbersome, and full of hacks.

Most large computer systems require the management of a vast number of processes

arising from a diverse population of users, applications, and requirements. This makes the

role of a scheduler very important in a large system. This paper identifies the requirements

imposed by a large system on a scheduler. The fundamentals of the UNIX 4.2BSD and

UNIX 4.3BSD schedulers are described in detail along with their design and

implementation drawbacks. These drawbacks are discussed in light of the scheduling

requirements imposed by a large system. This discussion is followe'd by the description of a

new scheduler for UNIX that has been designed and implemented at the University of

Maryland. The new scheduler is aimed at eliminating the shortcomings of UNIX 4.2BSD

and UNIX 4.3BSD schedulers.

• UNIX is a trademark of AT&T Bell Laboratories.

-112-

1. Introduction

Each version of UNIX succeeding the original has included implementation changes in

the cpu scheduler. The collection of scheduler changes over the years has produced a

UNIX 4.2BSD implementation that can consume as much as ten percent of total cpu time

just recomputing priorities every second, as estimated in [2]. The current scheduler

implementations show the signs of hacking, complete with outdated comments and messy

code.

This paper explains the critical issues involved in large system scheduling and the

fundamentals of the UNIX schedulers. The design and implementation shortcomings of the

current UNIX schedulers are examined, and a description of the design and implementation

of a new scheduler is presented.

2. Critical Scheduling Issues In Large Systems

In order to understand the impact of schedulers, consider the simplest single user

environments which place very few demands on a scheduler. The scheduler in such an

environment never has to decide as to which of many processes the cpu should be given.

Even when the case of background processes is allowed, demands increase only by a small

amount as all of the processes still belong to the same user and it is his work that is always

being done. In short, in a single user environment the role of a scheduler is a) to manage

multiple tasks, and b) to utilize the hardware in a manner that allows for maximum

overlap of processing between different devices, thus providing the maximum throughput

for a given system configuration.

As systems and environments grow to accommodate many users, and then to allow

each user to have many active processes, scheduling demands increase dramatically. A

large system can have a few thousand processes active simultaneously, requiring the

-113-

scheduler to make process selections from a much larger set of choices. A large machine

has an instruction time of a few nanoseconds, thus a new process may have to be scheduled

every few tens of microseconds. Furthermore. the scheduler must be flexible enough to

operate under changing load conditions, since large systems serve both small and large user

groups.

The increase in demands of a large system makes the scheduler a more significant

factor in system performance. An effective scheduler must maintain a reasonable amount

of responsiveness and utilize the hardware to optimize throughput so the best system

performance can be achieved. Large system schedulers must also allow convenient ways to

alter the usual priorities of processes so users can regulate the workload of a running

system. These goals of effective schedulers must be met under the variety of system loads

experienced by large systems and in the variety of user environments large systems reside.

Let us examine each of these objectives of a scheduler for large systems.

Responsiveness

The interactive response time has always been an important performance measure of a

large system. Large systems running UNIX place even more importance on the interactive

response time. since UNIX supports primarily interactive processing.

Most interactive users prefer a small and stable response time. A small response time

means that users can retrieve results quickly; a stable response provides a sense of

performance predictability to the users. Before requests are made, users can accurately

weigh the time needed to retrieve results against the benefits of the results. ~us. a

primary goal of a large system scheduler is to provide users with a stable response time

that is proportional to the size of user requests. Several studies have been conducted in

which system responsiveness has been related to user goals such as productivity, creativity

and satisfaction.

-114-

Throughput

The throughput of a system has also always been an important performance measure

of a large system. Large systems not only' support a few thousand active processes

simultaneously, but also support a large number of peripheral devices. These devices,

whose speeds and capabilities vary, make the task of reaching optimal throughput more

complex. Reaching the optimal throughput of a system requires each device to operate at

its best throughput, since the lagging device will be the bottleneck of a system. The

scheduler must select processes in an order so that the devices are utilized to maximize the

throughput of a system.

One common device in all systems is the cpu. The throughput of a busy cpu is

increased when the processing overhead is decreased, since the cpu can then use the

overhead time saved to complete user requests. Therefore, running a scheduler that

consumes little overhead is very desirable.

Maintaining the high throughput of a system, accomplished through good process

scheduling and reducing overhead, is another important goal of a scheduler for a large

system.

External Control of Resource Usage and Response Time

With the vast number of active processes in a large system, more processes are

available for user-imposed priority increases and decreases. Externally decreasing the

priority of unimportant processes, done usually during peak hours, is a quick way to

artificially decrease the workload and thereby shorten the response time of a system.

Externally increasing the priority of important processes is a quick way to make the

scheduler favor them. thereby shortening their individual response times.

Convenient mechanisms for the external adjustment of priorities have been prevalent

in operating systems used on large systems. There are several desirable characteristics of

-115-

such mechanisms. It is highly desirable that a priority adjustment algorithm produce

predictable results. It should also be possible to reverse the effects of manual intervention.

Adaptability

Most large systems vary considerably in the application mix, performance

requirements, system configuration, and system load. A scheduler is one of the basic

entities that must be tunable to adapt a system to different environments.

3. Fundamentals of UNIX Scheduling

The original implementation of UNIX described in [4] and [5] included a simple

scheduler that based the priority of a process on its compute-to-real-time ratio. A process

that used a lot of compute time in the last real time unit was assigned a low priority, and a

process that had received little compute time received a high priority. Runnable processes

were kept in a multilevel queue, higher priority processes could preempt lower priority

processes, and a quantum ended every second. Use of the compute-to-real-time ratio made

the scheduler favor interactive processes, albeit also nonserviced cpu bound processes. No

major considerations were given to the cost of the scheduling, since the goals of UNIX were

elegance and simplicity.

A look at the current implementations of the UNIX 4.2BSD and UNIX 4.3BSD

schedulers reveals that they operate in primarily the same manner. Priority assignments

do occur more often and consider more parameters than just the compute-to-real-time ratio,

and the clock frequency has been increased permitting quantums to end more frequently.

Their core design is still that of the original scheduler, though as we will see in the next

section, their elegance and simplicity have faded and their cost risen.

-116-

The remainder of this section presents and explains most of the code used in the

*implementation of the UNIX 4.3BSD scheduler. To understand its working, it is

important to remember that the implemented scheduler is not a process; it is a collection of

kernel procedures executed at fixed frequencies or upon the occurrence of certain events.

This description explains those procedures and their role in a running system. It is

assumed that the reader is very familiar with the C programming language.

Process Activity in the Run Queue

At the end of a system reboot when all system processes have entered blocked states,

SwtchO is called to idle the cpu and wait for the first user to login. As users log in, new

processes desiring service from the cpu are created. These processes are made runnable by

inserting their process table slots into the multilevel run queue. The procedure setrqO is

called to perform an insertion. The level of the run queue in which a process is placed is

determined by the value of the process' priority, p_pri. The lower the value of p_pri, the

higher the level. A process is removed from the run queue with a call to remrqO. An

invocation of swtch() will remove a process from the run queue and give it cpu service.

SwtchO, setrq() and remrq() are written in assembly language. Their code need not be

examined to understand the operation of the scheduler; only familiarity with their functions

is required.

Scheduling Event Waits and Timer Interrupts

When a process has control of the cpu but desires to wait for an event before

continuing, it places itself in a blocked state and releases the control via a call to swtchO.

SwtchO idles the cpu if the run queue is empty, or gives control of the cpu to the first

process in the top level of the run queue if it is not.

* The UNIX code excerpts have been taken from the Fourth Berkeley Software Distribution under license

from the Regents of the University of California.

-117-

Clock interrupts in UNIX 4.3BSD occur every ten milliseconds. At every tenth clock

interrupt, the process that has control of the cpu is forced to release the control. This

release of control, referred to as a quantum expiration, occurs regardless of when the

currently running process gained its control of the cpu. This type of quantum expiration

occurs in the following manner.

When a kernel procedure needs execution at a specific future time, its starting address

and wakeup time are placed in the kernel's callout queue using the procedure timeout(). The

system's clock interrupt handler hardclock() , among other things, examines the contents of

the callout queue for the existence of any procedures that need to be called out and

executed. If any are found, a low priority interrupt is scheduled that will occur as soon as

the interrupt priority level of the cpu drops to a low level. The low priority interrupt

handler, softclock(), will execute each of the called out procedures.

Timeout() and the portions of hardclock() and softclock() responsible for examining and

executing procedures in the the callout queue follow. The text enclosed by /** and **/ are

comments not part of the original source.

/** Arrange that (*fun)(arg) is called in tlhz seconds by placing it in the callout queue.
hz represents the frequency of the clock interrupt. In 4.3, hz is 100 **/

timeout(fun, arg, t)
int (*fun)O;
caddr_t arg;
register int t;

{
register struct callout *pl, *;>2, *pnew;
register int s = sp170; /** raise the cpu interrupt priority level **/

/** Procedure addresses are inserted in the callout queue such that their order from
front to back represents the order in which they are to be executed. The
wakeup time of a procedure is stored as a delta from the time of the
procedure in front of it. This method makes searching for a "due::
event fast, but requires scanning of the callout queue at every insertion.
Arguments used when the procedure is finally executed are also stored. **/

if (t < = 0)

t = 1;
pnew = callfree;
if (pnew = = NULL)

/** make sure wakeup time is in future **i

1** get the head of free callout queue element list **/
/** test for empty free list *>r<'

-118-

panic("timeout table overflow");
callfree = pnew->c_next;!** remove a free element **/
pnew->c_arg = arg; /** load the new callout queue **/
pnew- >c_func = fun; /** element **/

/** find the right place in the callout queue for the insertion and make the wakeup
time of the new queue element a delta from the previous element's time **/

for (pI = &calltodo; (p2 = pl->e-next) && p2->c_time < t; pI = p2)
if (p2- > e-time > 0)

t -= p2- >c_time;

pl- >e-next = pnew; /** insert the new element **/
pnew- >c_next = p2;
pnew->c_time = t;

if (p2) /** update the time of the next element **/
p2->e-time -= t;

splx(s); /** return to previous interrupt level **/

/** Portion of the clock interrupt handler executed every 10 msec. **/

hardclockO
{

register struct callout *p1; /** points to callout queue element **/
register struct proc *p; /** points to a process table slot **/
register int s;
int needsoft = 0;

/** look at the procedures on the callout queue and if we find any that should
be called, remember it so we can cause a low priority interrupt later to
execute them. We cannot call the procedures directly from here, since
doing so might make this execution of hardclock so long that we would
miss the next clock interrupt. **/

pI = calltodo.c_next;
while (pI) {

if (--pl->e-time > 0)
break;

needsoft = 1;
if (p1- >e-time == 0)

break;
pI = pl- >c_next;

}
1** **1
if (needsoft) {

if (BASEPRl<ps) {

1** Since we were operating at a low interrupt priority
level when the clock interrupt occurred, the
low priority interrupt will occur as soon as
we return. We can call softclockO here to
save the overhead of the interrupt. **1

-119-

(void) splsoftc1ockO;
softc1ock(pc, ps);

}else
setsoftc1ockO; /** cause the low priority

interrupt **/
}

/** Softc1ockO is called directly from hardc1ockO or as a result of an interrupt caused
by hardclockO to execute some procedures in the callout queue. **/

softclockO
{

for (;;) {
register struct callout *pl;
register caddr_t arg;
register int (*func)O;
register int a, s;

s = sp170; /** raise interrupt priority level **/

/** if there is nothing on the callout queue, or the next procedure on
it is not to be executed yet, return **/

if «pI = calltodo.e-next) == 0 II pl- >e-time > 0) {
splx(s);
break;

/** get the address and calling arguments of the procedure on the front of
the callout queue, advance the head of the callout queue, return
the used element to the free list, reset the interrupt priority
level to its previous level, and execute the procedure **/

}
/**

arg = pl->c_arg; func = pl->c_func; a = pl->c_tirne;
calltodo.c-llext = pl->e-next;
p1- > e-next = callfree;
callfree = pI;
splx(s);
(*func)(arg, a);

**/

Round-robin Beheduling

One procedure that is usually found in the callout queue, absent only when it is being

executed, is roundrobinO. RoundrobinO is placed in the queue during system initialization

by invoking it. Its execution causes an asynchronous system trap, AST, to occur as soon as

-120-

the interrupt priority level of the cpu drops to a low level. The AST handler removes

control of the cpu from the running process by placing it back in the cpu run queue. The

handler then gives control of the cpu to the next process via a call to swtchO. The periodic

execution of roundrobinO forces a rescheduling of processes every tenth of a second, never

permitting a single process to keep exclusive control of the cpu.

The code for roundrobinO and a portion of the AST handler follows. It is important to

see that roundrobinO always places itself back in the callout queue.

/* Force switch among equal priority processes every lOOms. */

roundrobinO
{

runrun + +; /** informs code to be executed before the next AST
that a rescheduling is about to occur. **/

astonO; /** #defined as mtpr(ASTLVL, 3) which will cause the AST. **/
/** call to timeoutO places the address of roundrobinO back on

the callout queue to be executed lOOms from now, thereby
setting up the next quantum expiration. **/

timeout(roundrobin, (caddr_t)O, hz / 10);

/** Portion of trap code executed when an AST occurs. **/

trapO
{

/** **/
(void) sp160;
setrq(p);
swtchO;
/** **/

Priority Recomputation

i** increase cpu interrupt priority level. **/
/** put slot of current process back in the run queue. **/
/** give cpu control to the next process. **/

Another procedure that is usually found in the callout queue, absent only when it is

being executed, is schedcpuO. Schedcpu() , like roundrobin(), is placed in the queue during

system initialization by invoking it. Its execution causes process priorities to be recomputed

every second. The method used to determine the priority of a process incorporates many

parameters, some of which are updated by the clock interrupt handler, hardclock(). The

-121-

portion of hardclock() relevant to schedcpu() , and all of schedcpu() follows. It is important

to see that schedcpuO always places itself back in the callout queue, just as roundrobinO

does.

/** Called out to recompute process priorities every second. **/

#define
#define
#define

fiIterOoadav) «2 * (loadav» / (2 * Ooadav) + 1))
NQS 32
PPQ (128 1NQS>

/* fraction for digital decay to forget 90% of usage in 5*loadav sec */
double ccpu = 0.95122942450071400909; /* exp(-1I20) */

schedcpuO
{

register double ccpul = (1.0 - ccpu) 1(double>hz;
register struct proc *p; /** points to a process table slot **/
register int s, a;

1** avenrun[O] contains the average number of runnable processes over
the last minute. Its value is recomputed every 5 seconds. **/

float scale = fiIter(avenrun[O));

/** **/

/** for every process table slot ... **/
for (p = allproc; p ~ = NULL; p = p- > p_nxt) {

/** increment the time the process has been in core **/
if (p->p_time t= 127)

p->p_time+ +;

/** increment the time the process has been blocked **/
if (p->p_stat= =SSLEEP II p->p_stat= =SSTOP)

if (p->p_slptime != 127)
p- > p_slptime + +;

1** if the process has been blocked for more than a second,
stop recalculating its priority. **1

if(p->p_slptime > 1) {

p- > p_pctcpu *= ccpu; /** updated for AT and ps command. **/
continue;

1** update the percent cpu usage of the process for AT and the ps
command. p_cpticks is the number of times a clock interrupt
occurred while this process had control of the cpu over the last
second, estimating its cpu usage **/

p- >p_pctcpu = ccpu lj< p- >p_pctcpu + ccpu1 * p- >p_cpticks;
p- > p_cpticks = 0; i** reinitialize for next interval **1

-122-

/** begin actual priority computation. p_cpu is the value of la' from the
previous call to schedcpuO. p_nice is a user imposed priority
value, ranging from -20 to 20. 'scale' was #defined above. **/

a = (int) (scale * (p->p_cpu & 0377» + p->p-llice;
if (a < 0)

a = 0;
if (a > 255)

a = 255;
p->p_cpu = a;
(void) setpri(p); 1** finish priority computation in setpriO **/

1** increase the interrupt priority level of the cpu to ensure atomicity
while examining and manipulating the run queue **/

s = splhighO;

1** if the signal reception level of the process is low, then
we can reset the priority **/

if (p- > p_pri > = PUSER) {

1** if the process is in the run queue and its new priority would
require it to move levels, remove it from the queue,
change its priority, and insert it into the new level. Note
the range of p_pri is 0..127 and must be divided by 4 to
make is correspond to a queue level.

if it is not in the run queue, simply change its priority. **1
if «p != u.u_procp II noproc) &&

p->p_stat == SRUN &&
(p- >p_Bag & SLOAD) &&
(p->p_pri IPPQ)!= (p->p_us~pri IPPQ» {

remrq(p);
p- > p_pri = p- > p_usrpri;
setrq(p);

} else

}
1**

}
splx(s); /** restore old cpu interrupt priority level **/

**1

1** call to timeoutO places the address of schedcpuO back on the callout queue
to be executed a second from now, thereby setting up the next priority
recomputation. **1

timeout(schedcpu, (caddr_t)O, hz);
}

1** SetpriO is called from schedcpuO to complete the remainder of a single priority
recomputation. If the new priority computed is better than the priority of the
process running when schedcpuO was called out of the callout queue, a process
rescheduling will be forced to occur via an AST. This occurs even if new priority
belongs to a blocked process. **/

-123-

setpri(pp)
register struct proc *pp; /** points to a process table slot **/

register int p; /** the new priority **/

p = (pp->p_cpu & 0377)/4; /** p_cpu was computed above **/

/** PUSER is #defined as 50; p_nice is the process' user imposed
niceness parameter, ranging from -20 to 20. **/

P + = PUSER + 2 * pp- > p_nice;

/** p_rssize is process' resident set size; p_maxrss is the process' maximurn
resident set size; freemem is the amount of free real memory in the system;
desfree is the desired amount of free real memory in the system. **/

if (pp- > p_rssize > pp- > p_maxrss && freemem < desfree)
p + = 2*4; /* effectively, nice(4) */

if (p > 127)
P = 127;

if (p < curpri) {
runrun+ +;
astonO;

}
pp->p_usrpri = p;
return (p);

/** if the priority is better than the current process', **/
/** force a process rescheduling **/

/** get process slot of current process **/
/** charge process with this interval **/

/** Portion of the clock interrupt handler executed every 10 msec. **/

hardclockO
{

register struct proc *p;
register int s;

/** **/
/** if the cpu was not idle when the clock interrupt occurred, charge the running

process for using the cpu the entire last interval. if this is a fourth clock
interrupt the process has fielded, then recompute its priority to allow
others to preempt it more easily. **/

if (!noproc) {
p = u.u_procp;
p- > p_cpticks + + ;
if (+ +p->p_cpu = = Q)

p->p_cpu--;
if «p->p_cpu&3) = = Q) { 1** fourth clock interrupt fielded? "'*/

(void) setpri(p); /** recompute priority **/
if (p- > p_pri > = PUSER)

p- > p_pri = p- > p_usrpri;

/** **/

-124-

Unblocking Processes

Preemption of the cpu occurs not only when setpri() is called from schedcpuO or

hardclock() as shown above, but when a process exits a blocked state and enters the cpu run

queue. The kernel procedure wakeup() is called by interrupt handlers when events

complete and processes should be unblocked. The following code is the portion of wakeup()

that completes the priority recomputation, run queue insertion, and preemption.

1** Unblock all processes that were waiting for the completion of
the event identifiable by the value of chan. **/

wakeup(chan)
register caddr_t chan;

register struct proc *p; /** points to a process table slot **/
int s;

s = splhighO;
/** **/

/** raise interrupt priority level **/

/** if the process being unblocked was in the blocked state for
more than a second, recompute its priority. **/

if (p- > p_slptime > 1)
updatepri{p);

/** reinitialize the blocking time; set the process runnable, and
put it in the cpu run queue if it is not swapped. **/

p- > p_slptime = 0;
p->p_stat = SRUN;
if (p->p-ftag & SLOAD)

setrq(p);

1** Always cause a process rescheduling to occur. **/
runrun+ +;
astonO;

i** **1
splx{s); i** restore interrupt priority level **/

-125-

/** UpdatepriO is called by wakeupO to recompute the priority of a process that was
blocked for more than a second. SetpriO and its variables were explained earlier. **/

updateprHp)
register struct proc *p; /** points to a process table slot **/

register int a = p- >p_cpu & 0377;
float scale = filter(avenrun[O]);

p- > p_slptime--; /* the first time was done in schedcpuO */
while (a && -p- > p_slptime)

a = (int) (scale * a) /* + p->p_nice *1;
if (a < 0)

a = 0;
if (a > 255)

a = 255;
p->p_cpu = a;
(void) setpri(p);

The combination of the described procedures yields the standard UNIX 4.3BSD

scheduler. The implementation involves procedures executed at fixed frequencies to

recompute priorities and force process reschedulings, and involved procedures executed as

events completed to unblock and recompute the priority of blocked processes. The next

section examines the design and implementation problems associated with the standard

UNIX schedulers.

4. Shortcomings In UNIX 4.2BSD AND UNIX 4.3BSD Schedulers

4.1. Design Specific Problems

Design specific problems are those that can be attributed to poor planning in the

earliest stages of problem solving. These problems are engrained in the respective

solutions, correctable only through completely new designs. The UNIX schedulers

incorporate several design specific problems.

-126-

Costly Priority Assignments

As observed in the last section, the process priorities in UNIX are based on: 1) the

amount of time the process has existed, 2) the amount and percent of cpu time it has

consumed, 3) the amount of time it has spent in a blocked state, 4) the amount of real

memory it has accrued, 5) the amount of real memory currently free, 6) the current load of

the system, and 7) a user imposed niceness parameter. The many values are passed

through an algorithm which produces a value deemed the process' scheduling priority. The

algorithm, coded in schedcpuO and setpri() , is costly to execute, difficult to understand, and

almost impossible to modify with predictable results. A separate, but just as complex,

priority computation algorithm exists in updatepri().

Not only are many parameters used in the algorithms, the ones measuring time are

merely estimates. Hardclock() , the clock interrupt handler, and schedcpuO, the priority

recomputing procedure, increment several time values when they are executed, including

values not presented in the code excerpts of this paper. Each procedure examines the

current state of the system when its execution occurs and assumes that the system was in

that state since the last execution. For example, hardclockO charges the process that had

control of the cpu when the interrupt occurred with use of the cpu for the entire ten

millisecond interval since the last clock interrupt. This method of measuring time based on

snapshots of the system produces values that are inaccurate and nonrepeatable. Using

these values contributes to the complexity of the algorithms that recompute priorities.

In addition to their complexity. priority recomputations occur at somewhat arbitrary

times. The priorities of processes waiting for cpu service and of those in the first second of a

blocked state are recomputed every second by schedcpuO, requiring a complete pass of a

process table that can contain a few thousand slots in a large environment. The running

process has its priority recomputed every 40 milliseconds in hardclockO, and the priority of

a process gets recomputed when it exits a blocked state by updatepriO. The tremendous

-127-

amount of overhead associated with priorities creates a negative impact on system

throughput, since the cpu cannot service user requests while computing priorities.

Few Tuning Opportunities

Another significant shortcoming engrained in the design is that no simple methods for

tuning were considered in such a complex priority computation algorithm. The

arbitrariness in the frequency and points of priority computations also yields little room for

tuning. All environments running UNIX 4.xBSD, large and small, rely on primarily the

same untunable schedulers. Large systems are particularly affected since a very significant

amount of the cpu is wasted irrespective of whether an environment needs these

computations.

Unpredictable External Control

The only way a user can affect the normal priority of a process in UNIX 4.xBSD is to

alter the process' nice parameter. The nice. parameters, used in the priority computation

algorithms, make priorities rise or fall relative to those of other processes. An examination

of the code does not reveal what the exact effect of a change in a nice parameter is, only

that a general scheduler favoring or shunning will take place.

4.2. Implementation Specific Problems

We can consider implementation specific problems as those problems that can be

attributed to the coding of a solution. Such problems can be corrected without a

corresponding redesign. The UNIX 4.xBSD schedulers also suffer from several

implementation specific problems.

-128-

Fluctuating Quantum Sizes

In the currently implemented UNIX, a quantum expires every tenth of a second,

regardless of when the running process obtained control of the cpu. The fixed frequency of

quantum expirations hampers higher throughput when a system is lightly loaded since the

cpu must service an unnecessary trap and perform an unnecessary context switch each

tenth of a second.

When a large system has many active processes and voluntary context switching

occurs frequently, it is often the case that a process must relinquish control of the cpu

immediately after obtaining it because the next tenth of a second had arrived. These

context switches also contribute to the UNIX scheduling overhead and the resulting impact

on throughput.

Priority Misuse

A process' priority is rewritten with a value designating its signal reception level

every time the process enters a blocked state. When the process exits a blocked state that

it had been in for less than a second, updatepri() is not called from wakeup(} for priority

recomputation; the signal reception level is used as the new priority of the process. If the

process had been in the blocked state for more than a second, a new priority must be

computed since the one available before the block was overwritten. This 20 line priority

computation algorithm, updatepriO, uses most of the parameters stated earlier and includes

a loop whose execution time is proportional to the time spent in the blocked state, limited to

a time of 127 seconds. Interactive processes, e.g. editors, must execute the costly priority

assignment algorithm frequently since they often block more than a second for terminal

input. This could have been avoided by simply providing an additional field in each process

table slot for the signal reception level.

-129-

4.3. Scheduler Implementation Differences of UNIX 4.2BSD and 4.3BSD

All of the problems described above still exist in the field test versions of UNIX

4.3BSD. The previous version, UNIX 4.2BSD, had more severe scheduler problems. Two

UNIX 4.3BSD scheduling changes described in [3] were implemented to relieve some of the

vast scheduling overhead of UNIX 4.2BSD.

In UNIX 4.2BSD, when the process table was scanned every second by schedcpuO to

recompute the priorities of processes, all blocked processes also had their priorities

recomputed. Furthermore, a process never had its priority recomputed when it exited a

blocked state. Also in UNIX 4.2BSD, a frequent type of unnecessary process rescheduling

described in [3] occurred.

4.4. Summary of UNIX 4.2BSD and UNIX 4.3BSD Shortcomings

The concepts and methods of priority assignments used in the UNIX 4.xBSD

schedulers are too complex and involve far too much overhead. The schedulers are difficult

to modify and provide no facilities for tuning. The mechanism provided for user

adjustments of priorities is simple but not predictable.

Problems in the current implementation of the UNIX 4.xBSD schedulers justify the

need for their reworking. The fluctuating quantum size used in the run queue and the

misuse of a process' priority field are two of the problems.

5. An Alternate Approach to UNIX Scheduling

This section describes the design and implementation of a new UNIX 4.3BSD

scheduler developed at the University of Maryland. Our goal was to undertake a surgical

operation of the UNIX 4.xBSD scheduler, leaving all of the fundamental design and

implementation concepts of the remainder of UNIX intact. The explicit goals of the

scheduler were maximizing responsiveness, maximizing throughput and available

-130-

adaptability, where maximing responsiveness took priority over the latter two. We

recognized that in order to fit these in with UNIX, the design had to be very simple. The

simplicity was also an approach to keep the scheduler overhead to a minimum.

5.1. Design Specifications

5.1.1. Run Queue Structure and Operation

The cpu run queue is of the multilevel feedback type [1]. When a process is created, it

is first placed in the run queue. A process in an upper level of the queue receives cpu

service before a process in a lower level. Control of the cpu is taken away from a process

when a) it enters a blocked state and releases control voluntarily, b) a different process with

a higher priority exits a blocked state and preempts the running process, or c) the running

process' quantum expires. Quantum sizes vary with each level of the queue, being smaller

at the upper levels and larger at the lower levels. The quantum of a process begins when

the process is removed from the run queue and given control of the cpu.

5.1.2. Process Priorities

The priority of a process waiting for the cpu directly determines the level of the run

queue in which it resides. The higher priority processes are in the upper levels; the lower

priority processes are in the lower levels. Changes to the priority of a process occur strictly

on an event basis. When a process performs some type of interactive activity its priority is

boosted, and when it completes an entire quantum of cpu service its priority is bumped.

The small quantum sizes at the upper levels, and priority boosting for interactive events are

designed to make interactive processes receive quicker service than their cpu bound

counterparts.

-131-

5.1.3. Available External User Control

Each process has an associated priority-min and priority-max. The priority of a process

never decreases below its priority-min, and never increases above its priority-max. The

priority-max is never set above the highest level of the run queue, and likewise the

priority-min is never set below the lowest level. Users are able to modify the priority-max

and priority-min values of a process, thereby limiting the range of run queue levels in

which it can reside.

5.2. Implementation Specifications

5.2.1. Run Queue Structure

The multilevel feedback queue is implemented as an array of 32 linked lists, similar to

the one in UNIX 4.3BSD. Each linked list contains process table slots and corresponds to

one level of the run queue. When a process desires service from the cpu, its process table

slot is appended to the linked list associated with its priority value by the procedure setrq().

When the process is selected to receive cpu service, its process table slot is removed from

the linked list by swtchO and the process is then referred to as the running process.

The quantum sizes for the levels are kept in a 32 element array of integers. When a

process switch occurs, the quantum size associated with the level from which the next

running process was selected is copied to a placed referred to as the current quantum. The

quantum size unit is dependent upon the frequency of the system's clock interrupt. At a

clock interrupt frequency of 50 hz, the quantum unit is 20 msec; at a clock interrupt

frequency of 100 hz, the quantum unit is 10 msec. The value of the current quantum is

decremented at each clock interrupt in hardclockO. When the value reaches zero, the

current quantum has expired and another process switch occurs. This implementation does

allow for some variance in the actual current quantum of a process, since processes do not

-132-

necessary gain control of the cpu immediately after clock interrupts. The quantum

decrementing occurs during clock interrupts to avoid the overhead of having a separate

interrupt timer run for scheduling purposes only, and because hardware does not usually

provide an additional interrupt timer.

5.2.2. Priority Boosting and Bumping

A new process' priority, priority-min, and priority-max are copied from its parent

during process creation. Priorities, bumped only at quantum expirations, are boosted at the

execution of several interactive events.

Creation Boosts

The first place a boost occurs is during the process' creation. This permits a new

process born from a cpu bound parent to demonstrate its interactive nature quickly. If the

new process is not interactive, its rapid set of quantum expirations at the upper levels of

the run queue will force it to a lower level along with the other noninteractive processes.

Disk Operation Boosts

A priority boost also occurs when a process performs a block disk read. Giving boosts

for disk operations keeps the disks active and the system throughput high. If the block

already exists in the operating system's block cache though, the boost is not given. This is

done to prevent a process from constantly reading the same disk block, then always found

in the cache, just to keep its scheduling priority high. Boosts are also not given for block

disk writes, since a process usually does not wait for them to complete before continuing. A

properly contrived process could then constantly write the same disk block, which would

only periodically get written to the disk from the block cache, just to keep its scheduling

priority high.

-133-

Terminal Operation Boosts

A large number of priority boosts are given to a process that demands terminal

interaction. A boost is given each time a process executes a terminal input command.

Giving boosts for terminal input will keep a highly interactive process in the top levels of

the run queue and interactive response time low. A boost is not given for terminal output

because a process usually never waits for the write to complete before continuing. A

process could then simply perform terminal output just to keep its scheduling priority high.

Priority boosting for terminal input is distinguished by the type of input being done.

Most window editors and other extremely interactive processes operate in raw input mode,

for which a small boost is given each time a character is read. Other very interactive

processes, usually ones producing a lot of information for very little input, operate in cbreak

mode and are given a moderate boost for each character read. The majority of interactive

processes operate in cooked mode, for which a significant boost is given each time a line of

input is read. The implementation recognized the distinction so that scheduling can be

accomplished properly between the interactive processes themselves.

Message Passing Boosts

Sending or receiving a message through an interprocess communication channel also

generates a priority boost for a process. Giving a boost for message passing is done to

prevent filters from sharply decreasing the response time of a set of concurrent processes

whose outputs are piped to other inputs.

Termination Boost

Receiving a signal requiring immediate termination generates a large boost to the

priority of a process. This permits a process executing at a very low scheduling priority to

terminate quickly and free its system resources, providing the user with fast external

-134-

control.

5.2.3. User Control

The system call setpriority() permitting user programs to change the priority of a

process has been modified. For example, the user program renice created before the

implementation of the new cpu scheduler, assumes its call to setpriority() modifies the nice

parameter of a process. The modified setpriority() instead maps the argument to an

appropriate priority-min and priority-max for the process. A new user program has been

created to allow explicit setting of a process' priority-min and priority-max.

The swapper, page daemon and init are the only processes created during the

initialization of UNIX. All other processes are created from init or its descendents, and

have copied the priority-min and priority-max from those specified for init during

initialization. Setting the initial priority values for init appropriately can lead to any of the

following control scenarios.

If the priority-min and priority-max for init are zero and 31 respectively, then all

processes created from init or its descendents will use the full range of priority run queue

levels for scheduling purposes. If the priority-min for init is set to a value greater than

zero, then all of the processes will not use the lowest run queue levels, referred to as the

basement, for normal scheduling purposes. Processes that should receive service only when

no normal process needs service should have its priority-min and priority-max set to values

less than the priority-min of init.

If the priority-max for init is set to a value less than 31. then all of the processes will

not use the highest run queue levels, referred to as the attic, for normal scheduling

purposes. Processes that should receive service before any normal process needs service

should have its priority-min and priority-max set to values greater than the priority-max of

init.

-135-

In all cases, the priority-min and priority-max of any or all processes can be set to

cover any range of run queue levels.

5.2.4. Scheduler Tuning

The ability to tune the new cpu scheduler is inherent in its design and

implementation. All environments have the ability to select the parameters best suited for

their needs. Quantum sizes, quantum size resolution, priority boost values, and initial

values for the priority minimum and maximum of init are available for individual setting.

In environments where copious amounts of cpu intensive work is undertaken, tuning

would be geared to emphasize the maximum throughput of a system. The quantum sizes

would be considerably large, the quantum resolution coarse, and the priority boost values

high. In environments where a significant percentage of the work is highly interactive,

tuning would be geared to emphasize a stable and minimum response time. The quantum

sizes of the upper levels would be small, the quantum resolution fine, and the priority boost

values low. In either case, the initial values for the priority minimum and maximum of init

would depend upon the applicable control requirements.

5.3. Implementation Details

This section presents and explains most of the code used in the implementation of the new

scheduler. The new scheduler, like the UNIX 4.3BSD scheduler, is not a process; it is a

collection of kernel procedures. It does not use most of the procedures of the old one,

including roundrobin(), schedcpu() , setpriO, and updatepri(). It is much smaller, in terms of

the number of lines of code, and is primarily event driven as opposed to clock driven. The

following description assumes that the reader is very familiar with the C programming

language.

-136-

The assembly routines swtch(), setrq() , and remrq() are basically the same. The

procedure setrq() has been modified to reflect the fact that the priority of a process now

directly determines the level of the run queue into which it is to be placed. SwtchO has

been expanded from its original 40 lines to include one line which reinitializes the current

quantum. The value is taken from the array of quantum sizes and corresponds to the level

from which the next running process came.

The implementation of quantum expirations is unique in the new scheduler. The

overhead involved in every insertion and removal from the callout queue of the procedure

roundrobinO has been completely eliminated. Quantum expirations occur directly in

hardclockO as follows.

/** Portion of the clock interrupt handler executed every 10 msec. **/

hardc1ockO
{

/** if there was a process running, decrement the current quantum. if the current
quantum becomes zero, decrement the process' priority so long as it doesn't
go below the process' priority-min, and then cause a rescheduling via
the AST. **/

if (!noproc) {
if U--quantum) {

if (--p->p_prior < p->p_min) {
p- > p_prior+ +;

}
runrun+ +;
astonO;

}
/** **/

Because the design associated with priority assignments in the new scheduler is so

very different from the old one, the corresponding implementation is also very different.

The old procedure to recompute priorities every second is never called, the priority of the

running process is not recomputed every fourth clock interrupt it fields, and the priority of a

process is not recomputed when the process exits a blocked state. Priorities, now bumped in

hardclock() , are boosted as described in the implementation specifications. The boosting for

-137-

a particular event is done in the upper layers of the respective device driver code. The

boost given for a block disk read, as an example, follows.

/* Read in (if necessary) the block and return a buffer pointer. */

struct buf *
bread(dev, blkno, size)

dev_t dev;
daddr_t blkno;
int size;

register struct buf *bp; /** points to a block cache buffer **/
register struct proc *p; /** points to a process table slot **/

/** **/

/** try to get the block from the block cache. return if obtained. **/
bp = getblk(dev, blkno, size);
if (bp- > b_flags&B_DONE) {

return(bp);

/** active the low level device driver to perform the read. **/
bp- > b_flags I= B_RE AD;
(*bdevsw[major(dev)].d_strategy)(bp);

/** boost the priority of the process making the request by the
value of the boost associated with block io. don't let
the priority exceed the process' priority-max. **/

newprior = p- > p_prior + bioboost;
if (newprior > p- >p_max)

p- > p_prior = p- > p-lllax;
else

p- > p_prior = newprior;

biowait(bp);
return(bp);

/** wait for the read to complete. **/

Preemption in the new scheduler occurs when quantums expire in hardclock(J and

when processes exit a blocked state. If a process is removed from a blocked state by an

interrupt handler's call to wakeup(), and has priority higher than that of the running

process, an AST is forced to occur. The difference between the old wakeup{) procedure and

the new one is that the new one does not contain the call to updatepriO. A process exits a

blocked state with the priority it had when it entered the blocked state; p_pri is used only

-138-

to specify the signal reception level.

6. Conclusion

In this paper, we have shown that a large system places heavy demands on the

scheduler, and that the scheduler plays a key role in system performance. We have

described in detail the standard UNIX schedulers and have shown that they have not

evolved as systems have. Because of the design and implementation shortcomings of the

UNIX 4.2BSD and UNIX 4.3BSD schedulers, a thorough design review and

reimplementation of the scheduler is an essential step in the advancement of large system

UNIX operating systems. The concise design and the corresponding implementation of the

new scheduler described should make the current goals of a large system UNIX scheduler

attainable.

The University of Maryland's new scheduler is still being refined. Discovering

characteristics about interactive processes that receive little or late cpu service gives way to

the consideration of new events for which boosting might occur. The standard set of boost

amounts and quantum sizes is still being developed. Further research and an extensive

analysis should yield the best parameters as well as valid performance data. We are

looking forward to testing the effectiveness of this scheduler on very large systems and in

varieties of user environments.

-139-

References

[1] E. G. Coffman and P. J. Denning, Operating Systems Theory. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[2] S. Leffler, M. Karels and M. K. McKusick, "Measuring and Improving the Performance
of 4.2BSD," in Proc. Salt Lake City Usenix Conf., pp. 228-236, June 1984.

[3] M. K. McKusick, M. Karels and S. Leffler, "Performance Improvements and Function411
Enhancements in 4.3BSD," Compo Syst. Research Group, Dep. Comput. Sci. and Elec.
Eng., Univ. of California at Berkeley, Berkeley, CA, 1985.

[4] D. M. Ritchie and K. Thompson, ''The UNIX Time-Sharing System," CACM, vol. 17, no.
7, pp. 365-375, July 1974.

[5] K. Thompson, ''UNIX Implementation," Bell Syst. Tech. J., vol. 57, no. 6, part 2, pp.
1931-1946, July/Aug. 1978.

A Straightforward Implementation of 4e2BSD
on a High-performance Multiprocessor

Dave Probert, Jeff Berkowitz, Mark Lucovsky

Culler Scientific Systems Corporation

ABSTRACT

The CULLER 7 scientific computer system is a high-performance mul
tiprocessor consisting of a single kernel processor and one to four appli
cation processors. 4.2BSD was implemented on this machine by execut
ing the nlajority of the operating system on the kernel processor, and
executing user code on the application processors. This paper describes
the implementation of the operating system kernel, with emphasis on
the effects of asynchronous multiprocessing, process pipelining, the vir
tual nlemory inlplementation, and the utilization of special hardware Cor
Corks, context switches, and I/O.

UNIX is a trademark of AT&T

Multibus is a trademark of Intel

4.2BSD is a trademark of the UC Regents

Culler 7 is a trademark of Culler Scientific Systems

VAX and UNIBUS are trademarks of Digital Equipment Corporation

-141-

1. Introduction

The Culler 7 is a high performance computer system targeted at scientific and engineering appli

cations, particularly those addressing the modeling and simulation area where a balance of scalar

and vector capabilities are required. The Culler 7 architecture does not depend on pipelines for

performance but incorporates the capability of executing multiple operations simultaneously

within one clock cycle. This parallel execution of non-repetitive code as well as repetitive func

tions provides a high level of delivered performance for both scalar and vector code.

In the sixteen years preceding the announcement of the Culler 7, Culler Scientific developed a

series of special purpose scientific computers for university research groups, the National Science

Foundation, and the U.S. Department of Defense. These processors addressed a wide range of

applications including signal and image processing, plasma physics simulation and linear algebra.

The design for one of these products; the AP-I20, was licensed to Floating Point Systems in 1975

and became an integral part of their commercial product line.

The design goal of the Culler 7 was to implement an extendible multiprocessor architecture that

could support general purpose scientific programming by taking advantage of the array processor

architectures Culler had pioneered. The design team focused on three primary areas: improving

the fundamental array processor design to eliminate performance bottlenecks, efficient execution

of programs compiled from standard FORTRAN and C, and designing hardware capabilities to

allow the effective implementation of modern operating systems.

2. The CULLER 7 System Architecture

The system architecture consists of one to four User Processors connected to two high speed bus

systems and coordinated by a separate Kernel Processor. I/O is provided by a Multibus I/O sub

system and through high-speed attachments directly to the system data bus.

Figure 1 contains a system level block diagram of a Culler 7 with two user processors. The kernel

processor controls the user processors and I/0 activities via the System Control Interface (SCI).

The kernel processor offered with the Culler 7 is a 68010 attached to a Multibus. By replacing

the SCI it is possihl~ to attach alternative kernel processors and busses.

The SCI provides hardware support for I/O, virtual memory, and context switching. This enables

the kernel processor, which is much slower than the user processors, to adequately service the I/O

and virtual memory requirements for CPU intensive application programs. Interactive response

under heavy CPU load is comparable to that of a VAX 11/750.

The existence of the separate kernel and user processors leads to the identification of three process

types in the system. Kernel processes are processes that have no user state and execute solely

within the kernel, such as the pageout and swapper daemons. User processes are ordinary

processes that execute on a user processor when in user mode. We refer to the processes that exe

cute in user mode on the kernel processor as system processes.

2.1. The User Processor

Figure 2 is a block diagram representation of a single user processor. Each user processor consists

of two parts, the XY-machine and the A-machine. The A-machine is designed to perform

addressing and program sequencing activities. The XY-machine contains the XY register

memory, an IEEE floating point adder and multiplier, and a datapath architecture that has

evolved from Culler's earlier array processor designs. The division of the user processor into two

machines has some similarities to the PIPE architecture IGoodman851, but was developed

CULLER 7

I
~

~

N
I

SYSTEM ADDRESS BUS 32) ,-->
SYSTEM DATA BUS (64)

Loca' Loca'
address address

(32) (32)

I I
'/ "'-./ Local data Local data

(64) (64)

r-,L11QUL r--~ ru"J -- '/ --, r--V'-- ---,
I v:

I
I

1 I I
I I

1 I I I

SCI
I I I

I
IKERNEL I 1 I

I I

I I 1
I

I
1PRCSA I I 1 I CONTROL- : HS I/OULTIBUS I XY A D I XY A D I I

I D LER) -- 0
,.... Q.. (0

r--
~ ~ Q 0

GLOBAL a I..... I-.l
I

MEMORY HIGH SPEED:

M ~7J48~ M~71p~ INTERFACE:
I

I

48 P .
I.
I

/\ /"-., 0"--- "'\ =1'-- / l.hA__ A I___ J ___ • _____ •• J ___I

- 10-

I I
I il I n

STAqlNG DATA BUS (64)

r ~STAGING ADDRESS BUS 32)

M

Figure 1: System block diagram of a Culler 7 with two user processors.

XV MACHINE A MACHINE

MICROCODE RAM MICRO rPROGRAM
ADD:ESS~SEQUENCER SEQUENCER MAPPING PROGRAM MEMORY

I
I
I

XY INSTRUCTION
: DECODE RAM INSTRUCTION BUFFER

I
I

!
INSTRUCTION EXTRACTION

~Y CONTROr

1 A INSTRUCTION

rA DECODEI l
.A CONTROLX Y

atADORESS ~ f4- ADDRESS

jUNIT UNIT
yb

I I1 I x Y
JIll

YC J.. I-CUL ~ REGISTERf--f XA xc IEMORY MEMORY YA REGISTERS FLE4K-32b 4K-32b ab

r _f
-t

I ~T Ixb yb
MULT ~r--l 18X18

~
I III I II I

;~~I AX IIX IIY

~
I T tI m ,

1:J
J

I
l- I--

IEEE/INTEGER
IEEElIN11:GERT1PUER J

ALU SWITCH ~"m.RY , OXI I OYIFUN n s I o ADDRESSx CONVERSION V. -:- • aln, co.. I MAPPINGOPERAnONS 1 atan ••P, log.
D-FIFO

f DXO I DYO J
I

Ih r 1 I Ir I
t t IDA .. D'Ar Ir t f f u y w

r1 ~ I ,
~J • I ,

I I • I DL DR, I

Figure 2: Block diagram of the architecture of a user processor.

I
~

~
w
I

-144-

independently.

The user processor has two sets of XY-memories and two D and P hardware page tables (D-map

and P-map). One set is associated with a half of the user processor. Only one half of the user

processor can be active at a time. The active half of the user processor is said to be the fore

ground half. The XY-memories and page tables associated with the background (inactive) half

are staged using the block transfer hardware in the SCI, which transfers between D-memory and

the staging bus. P-memory is shared by both halves of the user processor, and is written via the

staging bus by stealing cycles from the user processor.

2.1.1. XY-memory

The XY-memory is 4K 64bit words of fast access memory allocated as a stack. It is used for the

allocation of procedure call stack frames, which include subroutine linkages, procedure call argu

ments, and storage of register variables, automatic arrays, and vector registers. XY-memory is

liberally allocated for these purposes by the compiler, so 32KByt.es may not be adequate for some

programs. Privileged bounds registers are used to trigger roll-outs of the bottom of the XY

memory stack into data memory. The top of the stack is always kept inside the user processor.

XY-memory must be staged (or destaged) every time a process is put on (or taken off) a user pro

cessor. Staging normally overlaps with the execution of another process on the foreground half of

the user processor.

2.1.2. Instruction Sequencing

The A and XY-machines have separate instruction sets which are fetched from the common pro

gram (P) memory by the A-machine. Each A-instruction is executed in a single clock, as are most

of the X-instructions. However, an XY-machine instruction may invoke microcode that will cause

the XY-machine to sequence independently from the A-machine. A combination of microcode

and special hardware is used to implement the elementary functions and vector instructions. Pro

grams can also include microcode segments, generated by the compiler, which extend the XY

machine instruction set for the execution of that program. The microcode segments are loaded

into the user portion of microcode memory when the process is run on a user processor. The

operating system manages the microcode segments as an extension of program text.

P-memory is operated as a cache for the text pages that are the working set of currently execut

ing processes. Copies of all pages cached in P-memory are always maintained in D-memory.

Since P-memory is read only, this implies that it never requires destaging. Programs access P

memory through the P-map. This allows P-memory to contain pages from multiple processes

concurrently.

2.1.3. D-memory

All user processors share a large data (D) memory accessed over the D-bus. There are several

facets to the architecture that eliminate contention for D-memory: program text is fetched from

the separate P-memory, the compilers make heavy use of the XY-memories, and the D- bus is split

into multiple busses, allowing for up to five separate D-transfers in the same cycle.

Data requested from D-memory is received by the user processor in a three-deep FIFO. Address

ing is performed by the A-machine, but the data can be transferred from the FIFO into either the

A-machine (up to 32 bits) or the XY-machine (up to 64 bits). The hardware supports references
of 8, 16, 32, and 64 bits, and the user processor will recover from unaligned references (with some

-145-

performance impact).

2.1.4. Virtual Addressing and Process Structure

Program text and data live in separate virtual address spaces. Since text is always transferred

into P-memory from D-memory, it is possible to make text writable by mapping it into the data

virtual address space of a process.

Virtual addresses for text and data are mapped into physical addresses for P and D-memory by

the P and D hardware page tables (P-map and D-map). The tables are organized as two-way set

associative maps. The P-map translates program page addresses into P-memory physical

addresses, while the D-map translates data addresses into 32 bit D-addresses. Both the fore

ground and background halves of each user processor have a set of maps, so the maps can be

staged by the SCI along with XY-memory. The SCI copies addressing information into the

hardware maps from map images maintained in D-memory by the kernel processor. Since the

maps are always copies of the D-memory image, they never need to be destaged.

Figure 3 shows the structure of a loaded Culler 7 process. Kernel memory contains the same

structures as found in VAX 4.2BSD, but with extensions to associate the user microcode segment

and a separate page table with the text structure. D-memory contains the backing images for the

D-map, P-map, user microcode, and the t,ext segment. The data/stack segment is also in D

memory. The process control block (PCB) is the first page of the data segment, and the XY

memory rollout area exists above the stack segment in process virtual space. The user processor

is loaded from the appropriate areas of D-memory whenever a process is staged.

Each process has a single D-map image that is used for all user processors that it may be staged

onto. A separate P-map image is maintained for every processor that a process is staged on. This

is required because each user processor has a separate P-memory.

2.1.5. Synchronization and Interrupts

Synchronization between the A and XY-machines occurs through the interleaving of X and A

instructions in program memory. Additional synchronization is provided by the D-FIFO and syn

chronization bits on the inter-machine busses.

The user processor has a single level interrupt/trap structure that will put the user processor in

privileged mode and begin execution of a local interrupt handler (KUPO). Interrupts can occur

due to exceptions, arithmetic traps, system service requests within the user processor, or a

preemption interrupt from the kernel processor. KUPO is responsible for saving miscellaneous

register and hardware state into the PCB of the process.

2.2. System Control Interface

The System Control Interface (SCI) is the hardware that provides the connection between the
Multibus and kernel processor and the user processors and D-memory. It contains a collection of

functional units that operate in parallel. These functional units make a significant contribution to

operating system performance by offioading time critical functions from kernel processor software.

2.2.1. Staging

The local memories and page maps in the user processor are loaded from D-memory through the

SCI. When a process is selected to run on a user processor, the kernel queues a series of staging

transfers to the SCI. For each transfer, the SCI copies from a specified block of D-memory onto

PCB

Data
Segment

Stack
Segment

USER
PROCESSOR

XV
Memory

..... Misc.
Hardware

&
Register

State

o map

User
Microcode

Memory

Pmap

P-Memory
KUPO

&
Text Pages

Text

Segment
Backing

Pages

XV
Rollout
Area

D-MEMORY

Dmap
Image

User
Microcode

Image

r--·-a.- ---"--i
I I II I I~--:.-__
I I I-
I I IL ~ .1 1

Pmap Images

Data/Stack
L..----+---------1 Page ~

Tables

KERNEL
MEMORY

Proc.
Entry

User
Structure

Text
Entry

Text
Page
Table

Figure 3: Structure of a loaded Culler 7 process.

-147-

the staging bus. The memories in the background half of each user processor are addressable over

the staging bus. When a process is removed from a user processor, its XY-memory is destaged

back into D-memory. Because P-memory and the page maps are not directly modified by the

user processor, they do not need to be destaged.

2.2.2. D-memory Access

The Multibus provides 20 bits of address and 16 bits of data. The D-bus has 32 bits of address

and 64 bits of data, but also allows aligned 8-, 16- and 32-bit transfers. The SCI provides two

mechanisms for mapping the Multibus to the D-bus. These mechanisms are similar to the func

tions of the UNIBUS adapter on a VAX. The first facility is a set of registers that allow the

specification of a full 32 bit address and transfer size (byte, shortword, longword, or dou ble). This

facility is currently used by the kernel, and is convenient for transferring small amounts of data

with minimal overhead.

The second facility consists of windows onto the Multibus, each of which contain a set of address

mapping registers and a data assembly register. This facility is analogous to the buffered da.ta

path mechanism on the VAX UNIBUS adapter. The kernel allocates the windows using a

mechanism similar to the ubasetup() mechanism in 4.2BSD. The windows are used primarily by

the Multibus disk and tape controllers, but are occasionally used by the kernel to transfer data

blocks into the D-memory portion of the buffer cache. The mapping table supports scatter/gather

I/O and allows the disk controller to execute chains of I/O requests without kernel intervention.

The SCI contains a hardware transfer unit for copying blocks of D-memory. This facility is used

to transfer data from the D-memory buffer cache into process data space. Hardware D-to-D

transfers are also used for zero-filling pages and copying memory during forks.

2.2.3. Miscellaneous Functions

Several control and diagnostic functions are accessed through SCI registers in Multibus I/O space.

Each user processor has a control/status register. Control functions to reset} halt} run, interrupt,
and set readyexchange are provided via these registers. Serial state chains are threaded through

each user processor and accessed via other registers in the SCI. They provide access to internal

processor state for diagnostics, and are also used to determine processor and memory

configurations at system boot time.

The SCI is responsible for arbitration of the system D-bus. In this role it sees every global D-bus

transfer and records usage/dirty bits for physical addresses assigned to D-memory. Usage/dirty

bits for D-memory transfers accomplished wholly within a user processor (i.e., across the local D

bus) are recorded locally in a table that is accessible on the staging bus for each user processor.

3. Kernel Implementation

The kernel implementation began with an existing port of 4.2BSD running on the 6801Q...based

kernel processor. The CSD (Culler Software Distribution) kernel consists of a straightforward set

of additions to this base. The capability of executing user programs on the kernel processor was

retained throughout the kernel development. This eliminated many of the problems usually asso

ciated with bootstrapping a new UNIX port. During normal system operation, the only program

to run on the kernel processor is / etc/ init, but a full single user environment is supported on the

kernel processor for system initialization and diagnostics.

-148-

The implementation of the kernel was accomplished in the following phases:

0: Started with a fully functional 4.2BSD kernel on the kernel processor

1: Wrote a program on the kernel processor, the Single Process Executive (SPE), which

enabled us to run one process at a time on a user processor. SPE acted as the surro

gate for system calls. This allowed much of the KUPO code to be debugged and com

piler testing to start at a very early stage.

2: The rudiments of asynchronous multiprocessing were implemented in the kernel and

the the SPE code was migrated inside to form a version of the kernel that was capable

of running a single job at a time on a user processor.

3: Multiprocessing of user processor jobs was enabled by adding the staging code.

4: Finally, paging and swapping were added.

The additions made to the original 4.2BSD kernel can be divided into two categories: those

required for asynchronous multiprocessing and hardware support, and those designed to support

system performance. Examples of the first class are the KUPO (local trap handler) code, the user

processor system call mechanism, and the changes to the virtual memory code. The second class

includes the XY-mt'mory rollout mechanism, support of user microcode, and the distribution of

the kernel buff'!r cache across both kernel and D-memory.

Code was added to the kernel in the following areas:

(1) KUPO (user processor resident trap handler)

This code is responsible for first level response to all user processor interrupts, traps,

and exceptions. It categorizes the interrupt cause and communicates with the kernel

processor by leaving a message in the PCB and causing a kernel interrupt for cases

that require kernel processor intervention.

(2) User Processor Interface

(a) System Call Support

A new mechanism was implemented to accept system call interrupts at arbitrary times

and synchronize the resulting system call execution through a normal kernel context

switch. This mechanism is used to support all operations that may cause the requestr

ing process to block. Some non-blocking system calls are handled at interrupt time,

avoiding the kernel context switch.

(b) Stager

The user processor is supported by an interrupt driven staging driver that implements

pipelining at the process level. This pipelining is made possible by the user processor's

foreground/background memory implementation.

(c) Configuration

Code was added to support the autoconfiguration, initialization. and dynamic

deconfiguration or ofTlining of user processors and D-memory. The ability to dynami

cally remove a processor from the available set is important for diagnostics in a multi

ple processor environment.

(3) Hardware support

Special purpose hardware is provided by the SCI to support critical operations such as

process staging, block I/O, and process forks. Routines were added to the kernel for

-149-

allocating, managing, and accessing these resources.

(4) Virtual memory support

The base kernel contained a virtual memory implementation for kernel memory. A

separate pageout daemon, and parallel virtual memory code were added to support the

Culler 7 D-memory. Additional code was added to manage the P-memory cache

within each user processor and to support the separate text and data address spaces.

(5) Additional program segments

In addition to the text, data, and stack segments of standard UNIX, CSD supports two

additional program segments. A user microcode segment is implemented as a part of

the shared text mechanism. Each process also owns a second stack segment, called the

XY rollout. segment, the top of which is kept in the local XY-memory of the user pro

cessor. As the XY stack grows, more of the bottom rolls out to D-memory. When the

stack contracts, some of the bottom rolls back in. The CSD compilers use the XY

stack for local procedure frames and vector registers. A separate D-stack is main

tained for dynamic allocation of dereferenced data.

(6) Buffer cache

The system buffer cache is split between D-memory and kernel memory. Superblocks,

inodes, bitmaps, directory blocks, and indirect blocks are transferred into kernel

memory, while data blocks from ordinary files usually go directly into D-memory. The

operat/ional division of labor between the buffer caches is a consequence of the UNIX

filesystem design, and any block could end up in either cache. Code was added to the

kernel to detect blocks that end up in both caches; and one of the copies is always

invalidated before the other can be written.

(7) Miscellaneous kernel additions

The 4.2B5D implementation of signals was extensively modified to move functionality

into the user processors. Code relating to timing and timeslicing also required

modification in the multiple processor environment. The exec system call was

modified to allow the coexistence of kernel processor and user processor code files.

Programs are ezec'd on the machine appropriate to their type, as indicated by the

magic number. User physical I/O and swap I/O were modified to support D-memory

access. Changes were also made to the kernel to take advantage of some of the perfor

mance enhancements suggested in ILeffier84j.

Many of the areas traditionally modified duringUNIX kernel ports are absent from our list. This

is due to our decision to start with an existing 4.2BSD port and add the functions required to sup

port the Culler 7 multiprocessor. On the other hand, the implementation of the XY-memory and

user microcode segments required us to make su bstantial modifications to parts of the kernel that

are normally machine independent.

3.1. Job Stream PlpeUnlng

XY-memory, P-map, and D-map contain a significant amount of state. Context switches would

be very expensive if the user processor had to remain idle while the new process state was loaded.

Providing two sets of these memories within each user processor, and allowing a process to exe

cute using the foreground set while the background set is being staged, retains the bandwidth and

performance advantages of local memories without incurring the additional context switch

Interrupt a-Ikps
set ready
exchange

Process 8

executes user code

KUPO
saves atate
In 8'8 PCB

Process B

destaged by SCI

Proce88 D

8taged by SCI

FOREGROUND EXECUTION

BACKGROUND STAGING

BACKGROUND STAGING

FOREGROUND EXECUTION
I...

V'l
o
I

Proce88 A

de8taged by SCI

Process C

8taged by SCI

KUPO restores

8tate from C'a PCB

Process C

executes uaer code

set ready
exchange

a-Ikps

TIME

return from
Interrupt

Interrupt

Figure 4: Job stream pipe lining. Time from Interrupt of proce8s B until
return from Interrupt In process C la a few dozen microseconds.

-151-

overhead.

The result of this design is that the user processor effectively becomes a two-stage pipeline for

processes. Figure 4 shows the operation of the two stages of the pipeline.

In the worst case, staging of a user processor can take a couple of milliseconds. Frequently, only

small fractions of the memories and maps are used and the rest are not staged.

The pipelining of processes exacerbates the problems of asynchronous multiprocessing. Once a

process is staged and the readyexchange bit is set the process might start running at any time. By

the time the kernel processor responds to the a_ikps from the first process on the processor, the

second process may have already trapped and also be requesting kernel intervention. Careful cod

ing was required to avoid the handful of race conditions that pipelining created.

3.1.1. Context Switching

A user context switch may occur whenever a running user process requires service from the kernel

processor or the kernel processor preempts a user processor. In either case, the user processor

begins executing KUPO, which saves miscellaneous hardware and register state in the PCB, and

then executes an 4_ikps instruction. The a_ikps instruction accomplishes the exchanging of the

foreground and background halves of the user processor. a_ikps sends an interrupt to the kernel

processor and then the processor hangs until the kernel processor sets the readyexchange bit in the

user processor control register. The background halves of the memories and maps are then

exchanged with the foreground halves and the processor continues execution, but in the context of

the process that. had been staged onto the background half. In general, processes take longer to

execute than to stage, either because they are CPU intensive, or have relatively little active con

text to stage. Thus the readyexchange is usually set long before the a_ikp8 instruction is exe

cuted, and the exchange of processor halves takes place immediately.

When the exchange occurs, execution resumes after the a_ikps instruction. KUPO restores the

state of the hardware registers and any parts of the user microcode memory that are in use, and

then executes a return-from~interrupt instruction which, re-enables interrupts and turns off
privilege until the next time an interrupt occurs.

When a process is ready to run, the kernel selects a user processor, and then queues a series of

staging transfers to the SCI driver. The last staging transfer causes the readyexchange bit to be

set for the user processor. At the next system call, page fault, or kernel preemption interrupt, the

halves are exchanged, and execution of the new process begins.

A few special cases complicate this straightforward model of process pipelining. For example,

there may be only a single runnable process in the system. There is then no process to stage onto

the background half of the processor, and when the process exits the kernel, it is desirable to

resume the process without first destaging its XY-memory and then restaging the process onto the

other half of the processor. The kernel makes this optimization by artificially running a dummy

process on the other half of the processor which, immediately switches back to the real process.

3.1.2. Initialization

When the system first boots, / etcl init is executed on the kernel processor. The I etcl rc script

runs a configuration program that initializes the user processors and enables the execution of user

processor programs. Until the user processor is configured, processes can be run on the kernel pro

cessor only. Initialization consists of loading KUPO into the P-memory of each user processor,

setting the P-map and D-map appropriately, and then sending an interrupt from the kernel

-152-

processor. KUPO will begin execution and end up hanging at the a_ikps instruction, waiting for

the kernel to stage a process onto the background half of the user processor.

3.2. Kernel-mode User Page 0 (KUPO)

The local trap handler (KUPO) is the part of the operating system that runs on the user processor.

KUPO is privileged code that responds to all traps and interrupts within the user processor.

Interactions with the kernel processor are accomplished through a message buffer in the process

control block (PCB) of the currently running process. The PCB for each loaded process is locked

in D-memory.

The following example of how a system call is performed illustrates the activities of KUPO:

The user code pushes the system call arguments on the stack and executes an a_trap
instruction.

KUPO begins executing in privileged mode on the user processor.

KUPO saves the non-staged hardware context into the PCB.

KUPO copies the system call arguments into the PCB.

KUPO executes an a_ikps instruction, which interrupts the kernel processor and may cause

an immediate context switch to the process staged in the background.

The kernel picks up the system call from the PCB and performs the system call. If the pro

cess blocks inside the kernel, its processor half may be destaged and used for another pro

cess. In this case the process will have to be staged back onto a user processor at the end of

the system call.

The process is ready to be resumed. The other half of the processor will ultimately execute

an a_ikps instruction, which will cause a context switch back to this process. KUPO will

continue execution after the a_ikps instruction.

KUPO handles any messages it finds inside the PCB.

KUPO restores the non-staged hardware context from the PCB.

KUPO returns from the interrupt and begins executing the user code after the a_trap

instruction.

Page faults are handled similarly to system calls, except that the arguments are conjured by

KUPO from the hardware state, and the faulting reference is restarted.

Signal handlers are built and dismantled by KUPO based on the signal vector information which is

cached in the PCB. Signals can originate due to kernel processor messages (e.g., the /cillO system

call) or within the user processor (e.g., floating point exceptions).

KUPO also contains code for fixing up unusual cases of IEEE arithmetic, repairing unaligned D

memory references, rolling in/out the XY-memory stack, managing user microcode memory, and

single-stepping through user instructions or microcode for the debugger.

3.3. Asynchronous Multiprocessing

In standard UNIX, the system call interface is implemented through the execution of some sort of

trap instruction. The processor begins execution of the kernel trap handler in privileged state,

but still in the context or the user process, Le. the processes MMU/VM state and u structure.

The Culler 7 can have multiple user processes active at anyone time. For each user processor in

the system there can be active processes on the both the foreground and background halves, and

-153-

the kernel processor itself may have a process active either in user mode, or running inside the

kernel. To simplify discussion, we coined the term asynchronous multiprocessing to describe this

characteristic of the Culler 7 system.

3.3.1. Asynchronous System Calls

Asynchronous multiprocessing requires a means for creating arbitrary kernel mode contexts at

interrupt level. This is implemented by an interrupt handler that associates an interrupt from the

SCI with the kernel state of the user process that executed a_ikps, and a routine that builds a

kernel-stack for the process and places it at a high priority on the kernel run queue. When the

kernel processor is about to return to user mode, e.g., when returning from the SCI interrupt, a

kernel context switch will occur. This mechanism is similar to the use of a8ton() in 4.2BSD. User

processes don't have any 68010 user lv1MU state to be faulted in, which reduces the cost of 68010

context switches.

The kernel-stack is constructed so that when the kernel mode context switch occurs, the process

will return from swtch{} into the equivalent of trap(). This mechanism assumes that the kernel

stack for a user process is valid only while the process is executing within the kernel. As

described below, this assumption is not always correct; there is a race condition which must be

protected against. To build the kernel stack required that every loaded user process have its user

structure mapped into the virtual address space of the kernel. This was not difficult to imple

ment, but does consume slots in the kernel page table.

A user process can exit the kernel only by terminating or being staged onto a user processor and

calling swtch(). The calls to the staging driver to stage the process can complete before swtch() is

called. Thus for processes that have only small amounts of state to stage, there is a race between

the process on the user processor and the kernel. If the process tries to reenter the kernel before

the kernel has switched away from the process' kernel-stack, the SCI interrupt routine may try to

build a new kernel context over the top of the stack during the call to swtch(). This hazard is

avoided by deferring alterations to the kernel stack in cases where the process reenters the kernel

immediately.

3.3.2. Stager

The stager is responsible for processor allocation, staging and destaging of process state from the

user processors, and the manipulation of the hardware context swit.ching support on the SCI.

When a user process becomes ready to exit the kernel, an attempt is made to allocate to it the

background half of an available processor. If all processors are busy, the process is placed on the

user processor run queue until a processor becomes available. Once a processor is allocated to the

process, the staging transfers are queued up for the SCI.

One of the optimizations within the stager is that a process may reclaim the processor that it was

last on without. havi ng to be staged. This circumstance occurs when a process enters and exits

the kernel without blocking.

A user process explicitly releases its processor inside sleep() and ezit(). The routine called to
release the processor triggers the allocation of the processor to an awaiting process for staging.

The kernel does not have to be executing in the context of a user process in order to stage it.

Staging is implemented using interrupt driven queues, similar to the bu/ queues used by the

strategy /start/interrupt routines in block I/O drivers.

-154-

When a process becomes runnable, it may be placed on the user processor run queue because

there is no available processor. The user processor run queue is maintained separate from the

normal kernel run queue, which is used to schedule the 68010. Both run queues are implemented

with 32 linked lists of processes. Processes are moved from one linked list to another as their

priority changes. When a processor becomes free, the highest priority process on the user proces

sor run queue is allocated to the free processor and staged.

3.4. Clock Considerations

The CSD kernel required changes in the areas of priority adjustment, interval timer support, time

accounting, profiling, and time slicing.

3.4.1. Priority Adjustment

For the purposes of priority adj ustments, the 4.2BSD clock interrupt code looks at the currently

mapped u area to determine what process was active at the time of the interrupt, and looks at the

stacked psw to see if the process was executing in kernel mode or user mode. On the Culler 7

there may be up to nine processes (foreground and background of each of four user processors,

and a system process) that appear to be executing simultaneously. The kernel is careful to not

tick processes that have been staged, but are still on the background half of the processor.

3.4.2. Process Timing

The user processors are too fast for the resolution of the system clock interrupt to be useful for

measuring a process' user time. The CSD kernel takes advantage of a 3-microsecond resolution

clock on the kernel processor to provide more accurate user time accounting for user processes.

System time accounting is still done using the statistical sampling in the clock interrupt routine.

The 4.2BSD interval timers run off of the data collected from the high resolution clock.

3.4.3. Time Snclng

4.2BSD periodically switches between processes of the same priority by calling roundrobin() from

a 8oftclock interrupt. Roundrobin() preempts the currently running process, whic,h will call

swtch{} when it enters the kernel and start another process running. The same mechanism is used

for user processes on the Culler 7, but care is taken to stagger the preemptions so that the user

processes don't all try to enter the kernel at once. The staging driver always keeps the user pro

cessors full of available processes, so sending a kernel interrupt to a user processor is sufficient to

effect a context switch.

3.5. Virtual Memory Implementation

4.2BSD was originally implemented on the VAX architecture. At the conceptual level the VAX

looks up every page table entry in main memory, while at the practical level most address trans

lations are cached in the instruction lookaside buffer. The Culler 7 has two-way set-associative

page tables implemented in the hardware. For the CPU intensive programs found in scientific

and engineering applications, there is minimal cost associated with loading the page maps because

the transfers are overlapped with process execution, using the alternate set of maps.

It is inconvenient to manipulate the images of the map directly, and so VAX style page tables are

maintained in kernel memory. PTEs from the kernel page tables are written to the D-memory

images of D-map and P-map by a routine that handles the set-associative details of the map

-155-

entries.

3.5.1. Separate I and D Considerations

A significant change made to the virtual memory code was the creation of a separate page table

for text. The VAX architecture uses a single page table (PO) to map both text and data. The

4.2BSD implementation of shared text required that there always be at least one process loaded

for each in-core text so that the front of the process' PO page table could be used to maintain the

page table for the text. Every operation made to a page table entry for text had to be distributed

to the PO page tables for all other loaded processes that were attached to the text.

The 4.2BSD page table mechanism for text would have been difficult to implement on the Culler

7 because text and data reside in overlapping virtual address spaces. Instead we allocate a

separate page table for text and associate it with the text structure. This simplified the imple

mentation of shared text at the cost of increased usage of kernel memory.

3.5.2. Program Text

The instructions executed by a program reside in P-memory. There is a separate P-memory for

each user processor, but any P-memory may contain pages for more than one process con

currently. Support for P-memory was provided by adding a layer on top of the virtual memory

code. The text segment is maintained in 8KB D-memory pages. When a P-page fault is encoun

tered, the kernel transfers a 2KB subpage from D into P using the SCI staging facility. If the

page was not resident in D, the page must first be paged in from disk, using the same mechanism

that handles data faults in D-memory.

Reclaiming pages of P does not require a separate pageout daemon. P-memory is relatively small,

its pages never get dirty and the penalty for having to transfer a page back in from D-memory is

fairly small. The P-memory allocator simply takes what it needs by reclaiming the least-recently

used P-page that it can find. The allocator never needs to block, and can even be invoked at

interrupt level.

3.5.3. Pageout Daemon

Supporting asynchronous multiprocessing posed some interesting problems for the D-memory

pageout daemon. In a uniprocessor, pages may be taken at will by simply unmapping them.

Because there is only one processor, there cannot be a user mode process racing to modify the

reference/dirty bits while the kernel is examining them.

On the Culler 7: the pageout daemon may be running in parallel with several executing user

processes. The pageout daemon is biased against stealing pages from running processes, but when

it becomes necessary, special care is taken to check the hardware reference/dirty usage bits again

after the page has been unmapped. Unmapping the page is itself complicated because the process

must be temporarily put on the background of the processor in order to modify its maps via the
staging bus.

4. Conclusions

The architecture of the Culler 7 multiprocessor has enabled us to make a straightforward imple

mentation of 4.2BSD. By running the operating system on a separate kernel processor, and start

ing with an existing kernel port, many aspects of the implementation were simplified. We were

able to spend more of our time implementing visible functionality, such as multiprocessoring and

-156-

staging, and much less time making invisible changes to boilerplate code like locore.s and the dev

ice drivers.

Because the kernel didn't have to be bootstrapped, it supported a fully functional development

environment from the beginning. We were able to use the capability of running processes on the

kernel processor to incrementally integrate the user processors into the system. In the early

stages when the hardware and compilers were still shaky, occasional compiler bugs and hardware

failures in the user processor or SCI resulted in fewer mysterious kernel crashes than would other

wise be expected.

The most significant advantage of our approach is that while for the short-term we have avoided

the hard problems of distributing the operating system onto multiple processors, we have created

a platform from which functionality can be migrated onto the user processors based on analysis of

performance bottlenecks for real applications. The first code to be migrated was the signal han

dling mechanism. Future operating system releases are expected to transfer more of the virtual

memory and interprocess communication functionality onto the user processor.

The involvement of the operating system implementors early in the design of the Culler 7 archi

tecture allowed design trade-offs to be made jointly from the viewpoints of both the operating sys

tem and the hardware implementation. The result was a system that fits naturally into the

framework of 4.2BSD UNIX. It was designed with 4.2BSD in mind from the beginning.

Contributors

The initial design work was done by Dave Probert. Jeff Berkowitz and Mark Lucovsky completed

the design and did some of the trickier parts of the implementation. Steve Byrne modified the

code for the pageout and swapper daemons, the buffer cache, and the disk and tape drivers. Dave

McMillen wrote KUPO. John Gerngross uncovered numerous bugs in our system and 4.2BSD in

general by applying systematic testing to the kernel.

References

[Lemer84] Leffler, S., Karels, M., and McKusick, M. K., Measuring
and Improving the Performance of 4.fBSD. Proceedings of the 1984

Summer USENIX Conference at Salt Lake City

[Goodman85] Goodman, J., et ai, PIPE: A VLSI Decoupled Architecture,
Proceedings of the 12th Annual International Symposium on Computer

Architecture

Porting UNIX to the System/370 Extended Architecture

Joseph R. Eykholt

Amdahl Corporation
Sunnyvale, California

ABSTRACT

The UNIX l operating system has been ported by various groups to the System/370
mainframe architecture. The new System/370 Extended Architecture offers
capabilities that improve the power and flexibility of UNIX systems. These
capabilities include a significantly larger address space, an enhanced (f0 subsystem,
and advanced mUltiprocessor features.

This paper describes an implementation of Amdahl Corporation's UTS2, a
System/370 UNIX product that takes advantage of the Extended Architecture.
Emphasis is placed on the design considerations required for the new features of
XA that are unique to very large mainframe UNIX implementations.

1. A comparison of Systeml370 and System/370 Extended Architecture

To understand the motivations and effort involved in porting UNIX from Systeml370111 to the
Systeml370 Extended Architecturel:!1 (XA), it is necessary to understand the differences between
these two architectures. Readers who are more familiar with minicomputer and microcomputer
architectures may find the differences interesting, especially the difference in scale. This
description is a bit simplified. leaving out details not essential to the discussion.

The Extended Architecture has provided new features and removed some of the restrictions
imposed by the earlier Systeml370 architecture. This extension has been provided in such a way
that user programs written for Systeml370 should require no change to execute correctly. However,
the changes to the operating system were significant. Therefore, this discussion will concentrate on
the areas'which are different between the two architectures.

).1 System Architecture

Figure 1 shows the primary connections between the major components of a Systeml370 mainframe.
Several central processors may be present. sharing main memory. Currently, the largest non-XA
Systeml370 implementations can support two CPUs. 64MB of main memory, and 32 (f0 channels.
With XA. the Amdahl 5890-600 will support four CPUs with 512MB of main memory and 128
channels.

1.2 110 Architecture

The lIO processors operate somewhat autonomously. transferring data between main memory and
devices via the channels. Each channel is in many ways similar to an intelligent direct memory
access (DMA) controller. especially with respect to the way it is viewed by the CPU. Internally the
channel has a processor that can be as powerful as some minicomputers. Channels multiplex their
activity to permit several transfers to be active simultaneously on the same channel. Each channel
can have a transfer rate of up to 3 megabytes per second. The operating system performs lIO
operations by building a channel program, and signaling the channel to start executing it. The
channel program is simply a sequence of one or more channel command words (CCWs), which each

I. UNlX is a trademark of AT&T BeU Lahoratori~.

2. UTS is a trademark of Amdahl Corporation.

-158-

channels
110

CPU -- ~ processor

main........ ~........ memory ~
channels

CPU
110.....- ~

processor

Figure 1. System/370 mainframe organization

describe an operation (read, write, seek, etc.). and a data buffer to be used. The channel
communicates status back to the CPU with an VO interrupt, during which a channel status word
(CSW) is stored.

channel tape
1------1 control

unit

mainframe

disk
channel

1------1 control
unit

Figure 2. Example channel. control unit. and device connections

1.2.1 Channels, Control Units, and Devices Each VO device has a control unit that is connected to
the mainframe channel. See figure 2. The control unit is sometimes integrated into the device or
the channel, but there is always the logical concept of a control unit. whether it exists as a separate
physical entity or not.

Most control units serve several devices. For example, a disk control unit will typically control as
many as 32 disk drives.

1.2.2 Alternate Paths and Sharing Devices can be attached to one or two control units, and
control units can also be attached between up to four channels, as shown in figure 3. Attaching a
device to two control units is useful because it can provide an alternate path to a device when a
control unit is busy. Attaching control units to different channels is useful for providing alternate
paths when a channel is busy and for sharing devices among several mainframes.

Another reason for alternate paths is to enhance reliability. When a path fails because of a
hardware problem, the error can usually be detected and the path disabled. U there is an alternate
path that remains operational, access to the device is not lost.

1.2.3 Busy Conditions All this sharing makes it inevitable that busy conditions occur. Since the
device, control units. and channels cannot queue all requests. the VO supervisor in the operating
system has to be aware of the configuration and manage the appropriate queues. With alternate
paths to devices, the VO supervisor can re-route requests to another channel.

-159-

channell
control

channel 2 unit 120

mainframe

channel 8
control

channel 9 unit 820

Figure 3. Example alternate paths connections

1.2.4 The XA I/O Subsystem One major area of difference between System/370 and the Extended
Architecture is the va subsystem, which consists of the VO processors, channels, and the associated
microcode and tables. In XA. most of the queuing and path selection functions of the Vo supervisor
were moved into the va subsystem, freeing the operating system's [/0 supervisor from the overhead
of those tasks.

To provide these functions. the XA [/0 subsystem requires that it be told about the configuration of
the peripheral farm. This is done with an VO configuration file that is used to build tables in the [/0
subsystem's memory during system initialization. va requests and interrupts no longer refer to the
channel and unit address, but use an arbitrarily assigned subchannel number that corresponds to the
device involved. For operator convenience. there is a user-assigned device number that is used in
all console messages and administrative commands. This device number is mapped into the
subchannel number by the operating system.

1.2.5 Multiprocessor Considerations In a Systeml370 multiprocessor configuration, the channels
are divided into one or more channel sets. Each CPU may connect dynamically to at most one
channel set, and at most one CPU can be connected to each channel set. For more than one CPU to
be capable of [/0, there can be alternate paths to the device, one from each channel set, and each
CPU can use the channel set connected to it. This reduces the options open to each CPU in
initiating the VO when its path is busy. I/O interrupts providing status on a request always occur on
the channel that issued the request, meaning that the same CPU that initiated the request must take
the interrupt.

In the System/370 Extended Architecture, there is only one channel subsystem, regardless of the
number of processors, and any CPU can start [/0 requests to any device. [/0 interrupts can be
presented to any CPU that is enabled for them. Therefore, XA is a much more suitable
environment for multiprocessor operating systems. Because the CPUs no longer have all of the
burden of managing L'O. higher levels of multiprocessing can be supported by XA.

Although the current dual processor implementation of UTS does [/0 from only one CPU. XA allows
us to begin development toward a completely symmetrical multiprocessing implementation.

1.3 Addressing

In System/370, all effective addresses are 2-l bits wide, limiting the address space to just 16
megabytes. When a 32-bit register is used to generate an address, the high order byte (ordinarily
the most significant) is ignored. Unfortunately. this feature has been exploited by assembler
programmers in many ingenious ways. It has also been exploited by the architecture, by using the
high order byte of words containing addresses for other purposes. For example. the channel

-160-

command word (CCW) contains the buffer address in bytes 1, 2 and 3, but uses byte 0 for the
command code.

Pre-XA Channel Command WordIcommandI data address

o 78

I I flags I unused I data length

31 32 39 40 47 48 63

63

New XA Channel Command WordIcommandI flags I data length I I d_a_ta_ad_d_r_e_ss _

o 7 8 15 16 31 32

Figure 4. Old and new channel command word formats

XA provides compatibility with 24-bit mode, but also provides a 31-bit addressing mode. This
allows an address space of up to two gigabytes. To provide larger address fields. most hardware
associated structures. including the PSW. CSW. CCW. and page table entries have changed. Figure 4
shows the CCW formats. both of which are available in XA.

1.4 Virtual Memory

Non-XA systems can have 64K or 1M segments. and 2K or 4K pages, although only 64K segments
and 4K pages are standard features of the architecture. Although programs can directly access only
16 megabytes, the non-XA page table entry, shown in figure 5. allows support of up to 64
megabytes of real memory, by squeezing two extra bits of real address into bits 13 and 14.

System/370 Page Table Entry

real page address
I 6 7

N
bits 8-19 A

o 11 12 15

System/370 XA Page Table Entry

0
real page address o I P 0 software

bits 1-19 bits

o 1 19 20 23 24 31

li'igure S. Old and new page table entries

XA systems only provide 1M segments and 4K pages. To support larger virtual and real address
spaces, XA uses a new segment table and page table format. To accommodate the larger page
frame address. the XA page table entries are 4 bytes wide. The maximum size of the hardware
page tables has grown from 32 bytes to lK bytes. and the segment table from lK to 8K bytes.

2. Motivation.~ for Porting UTS to XA

The prime motivation for using XA mode machines has been from applications that require address
spaces greater than 16M. So far, these applications have been mostly digital logic simulations, and
other LSI and VLSI chip design applications. One user, doing LSI design work under IBM's non-XA
VM operating system. must run all applications larger than 16M bytes on minicomputers. Some
estimate that even the two gigabyte address space provided by XA will soon be insufficient for
certain applications.

Since processor speeds are constantly improving, the 64M byte limit of mainstore was becoming a
system bottleneck for some operating systems. Larger real memory sizes allow more users to be
supported, and allow better swapping policies. Already XA systems have been announced which
will provide 512 megabytes of real memory. If the trend in memory size growth continues. 31 bits

-161-

will not be enough for real memory addressing.

Currently all machines that support the XA mode can also be used in non-XA mode, by selecting
the mode during system initialization. However, it is clear that XA is the preferred mode of
operation on these machines.

3. UTS Changes Required for XA

3.1 I/O Supervisor Changes

Since many of the functions of the 370 mode I/O supervisor have been taken over by the hardware,
the XA version software is much simpler than its 370 mode counterpart. All queuing for channels
and control units was removed. since the operating system no longer requires any knowledge of
them.

3.1.1 Error recovery The XA I/O subsystem reports channel-detected errors in a new way. All I/O
interrupts must come from a subchannel. If the I/O subsystem detects an error on a channel
interface that cannot be associated with a subchannel, it presents a new class of machine check.
called "channel report pending." When this machine check occurs, channel report words are
obtained with a new instruction, and the contents are used to guide the recovery.

The method by which errors that can be attributed to a device are reported hasn't changed
significantly between the two modes.

3.1.2 Path Selection Control Path selection in XA is performed by the I/O subsystem. so that
function was easily removed from the UTS [/0 supervisor. It is sometimes necessary for the system
administrator to have control over which paths to a device are enabled (varied on). If. for example,
a control unit failure caused the recovery system to disable paths using that control unit. those paths
would need to be manually enabled after repairs are completed. Control over which paths can be
selected is still available to the system administrator through the vary command. This command and
its associated system call were modified so that they would function in both XA and non-XA modes.

3.2 Device Driver Changes

To perform I/O operations. the device driver calls the start 110 routine with the device address, a
ccw pointer. a pointer to a function to handle the interrupt. and an argument to be passed to that
function. When an interrupt is accepted for that request. the interrupt handler function is called
with the given argument and the channel status word.

It was possible to maintain the same interface between the device drivers and the 110 supervisor for
both architectural modes. The device drivers call the I/O supervisor routines with device numbers.
and the [/0 supervisor translates these to subchannel numbers before performing the requested
operation. The channel command and channel status words are described in C language structures
that use bit fields to declare the status and flag bits. To reflect the new CCW and CSW formats. it
was necessary to redefine these structures. This only required changing the sequence of the existing
fields and adding new tieIds. Some drivers, which did not use the defined structures to access CCW
and CSW fields had to be modi fied so that they now do. and so now all drivers have the same source
code for both architectural modes. with ifdefs only in the header files.

3.3 Memory Management Modifications

The page table and segment table format change was handled by simply changing the structure
definiti.ons in the header tile. Most of the memory manager source is common to both modes.

3.3.1 Copy on access bit The UTS memory manager has a feature that delays copying pages after a
fork until the pages are referenced. During a fork the page tables for the data and stack segments
are copied with all pages marked invalid and a" copy-on-reference' I bit set in each page table. If
the pages are referenced. a page fault occurs and each process is given its own valid copy of the
page.] In non-XA mode. there were no free bits in the page table entry. so a word was used to hold

-162-

the copy-on-reference bits for each of the 16 entries. In XA mode there can be up to 256 entries in
a page table, so a bit map could be used, but since there are eight bits in each XA page table entry
that are reserved for use by the operating system, one was used as the copy-on-reference bit. Code
which inspects or alters these bits was changed to use a preprocessor macro, which is redefined for
XAmode.

As previously mentioned. the maximum size of page tables increased from 32 to lK bytes, and the
segment tables from 1K to 8K bytes. Since UTS currently manages free space in 4K pages, it was
decided to use only 4K byte segment tables temporarily. This still provides users with 1 gigabyte
address spaces, which should be enough until the memory allocation routines are rewritten.

Since most text and data segments are nowhere near 256 pages long, the large page tables are
wasteful users of real memory. Consider that most urs utilities use around 20K bytes of memory in
three segments (text, data. and stack). This requires three page tables and a segment table. for a
total of 7K in translation tables. Eventually, the memory manager will be modified so that it adjusts
the page and segment table sizes for the process.

3.4 Changes to the exec System CaD

24-bit addressing is usually sufficient, and a few applications require it, so it was decided to make
that the default mode for user processes. The architecture provides the ability to use shorter
segment tables for 24-bit address spaces, so tITS may eventually take advantage of this and handle
small address spaces more efficiently. It seems desirable to allow the kernel to change the default in
the future, so two flags were added to the Common Object Format File (COFF) header to identify
programs with special requirements. One flag is for programs that need their address space to be as
large as possible. The other is to specify that the executable must be run in the 24-bit addressing
mode.

3.4.1 Requirements for shared text segments urs requires that the text and data sections of
shared text programs not share the same page table. This provides for a more efficient method of
mapping the text sections into multiple address spaces. Since XA increases the amount of memory
represented by each page table from 64K to 1M bytes. shared text programs for XA machines must
have their data segments in a different 1M section than their text. The changes to the kernel allow
shared text programs that do not obey this constraint to be treated as non-shared programs. The
loader was changed to start data sections on a 1M boundary by default, even for non-XA machines.
Altbough some of the address space is wasted by this restriction, it does not change the number of
real memory pages used.

3.4.2 The Gigabyte core file When a program aborts, its address space may be larger than the
available disk space for a "core' I file. If this occurs, it should be still possible to write tbe stack
segment or at least the user page to the file.

3.5 Utility Changes

Several standard utilities required changes. Where possible. changes were made in such a way that
the program would work in both modes. User applications should require no change at all.
However, re-linking of user programs may be desirable to take advantage of shared text.

3.5.1 CCS Changes The C compiler was changed to allow the new 31-bit addressing subroutine
linkage instructions to be used. This is necessary only on those programs that have code sections
larger than 16M bytes.

3. It would have been better to do the copy unly on references that modify the page. but the architecture d~n't provide
enough suppon to do that cleanly. and it seems unlikely that perfurmance would be improved greatly.

-163-

The assembler was changed to add several new instructions, including new instruction formats,
primarily for use by the few small assembler routines in the kernel. The linker was modified to
allow the large address space flag to be set, to handle larger sections, and to change the default
alignment of data sections, as discussed earlier.

3.5.2 ps The portion of the ps command that prints the command line arguments of processes
currently operates by reading through the translation tables to find the stack page of the process,
either in memory or on a paging device. Since the header files containing page table access macros
were modified for the kernel so that they work correctly if the preprocessor symbol XA is defined,
ps worked correctly in XA mode after it was recompiled. However. it was irritating for us to have
to recompile ps every time we switched our test system between XA mode and non-XA mode. In
order to save ourselves that bother, the code that prints the command line arguments was placed in
a separate module which was compiled twice, once with the preprocessor symbol XA defined. and
once without it. The routine name was also changed for the XA case. It was modified so that it
could determine at execution time whether it is being used on an XA machine or not. and use the
appropriate routine.

Eventually, it may be possible to eliminate this code in ps entirely. Some systems store the
command line arguments in the process's user structure, freeing ps from having to know the layout
of the page tables. This has the disadvantage that programs cannot hide their arguments, as the
crypt command does. When the /proc file system is available, providing a file for each process's
memory image, ps could use these files to read the arguments. 131

3.5.3 sysdump The dump analyzer program. sysdump, which is similar in function to crash,
formats several system structures. and some of these have changed format for XA mode. The
technique used for ps couldn't cleanly be used for sysdump, because of the number of special cases.
Instead the makefile for sysdump was modified to make both a non-XA version and an XA version.
These both come from the same source, except that the latter one has XA defined. A shell script
decides which version to use based on the kernel type in the memory image.

3.5.4 booting The ipl (initial program load) program has been changed to adapt to the
architecture of the machine, and to check the kernel type after it is loaded to be sure the correct
kernel has been specified.

4. Summary

UTS has been adapted from the SystemJ370 environment to the SystemJ370 Extended Architecture.
This has been done with little or no impact on applications programs. The resulting system provides
a much larger address space, to support larger applications. as well as larger real memory
configurations.

The changes to the system allow kernels for the two modes to share most of the source code. A
UTS system with these modifications that is running in 370 mode can be converted to XA mode or
vice-versa without changing any programs or files, except for those that require the special features
provided by XA.

After reading this paper. one might conclude that the UTS kernel is very different from other UNIX
ports. While there are signiticant differences, that perception may be exaggerated because we have
been describing only those low-level portions that are different. The rest of UTS is very
recognizable as the UNIX we all know and love.

5. Acknowledgements

A special thanks to George Cameron who shared in the conversion effort. Thanks also to John
Marshall, who quickly modified the loader and assembler, and fixed several problems with the exec
system call. Thanks also for the generous support by the entire UTS group at Amdahl.

-164-

REFERENCES

1. IBM System/370 Principles of Operation, Publication number GA22-7000-9.

2. IBM Systeml370 Extended Architecture Principles of Operation, Publication number SA22
7085-0.

3. Processes as Files. T. J. Killian, USENIX 1984 Summer Conference Proceedings.

Full Duplex Support on Mainframes

Don Sterk

Amdahl Corporation
Sunnyvale, California

ABSTRACT

The usual method of providing character by character I/O with echoing by the host
requires two interrupts per character. Minicomputers frequently become bogged
down with terminal I/O with tens of users. This paper examines how to provide
full duplex ASCII support on a mainframe for hundreds of users without noticeable
delay. A case study is made of UTS1 full duplex using an Amdahl 4705 as a front
end and a packetizing scheme preventing the necessity of an interrupt for each
character read.

INTRODUCTION

Although large mainframes provide the power for rapid computation and processing large blocks of I/O,
they may incur high overhead per I/O transaction. The character-by-character nature of full duplex I/O
leaves them prey to the same problem minicomputers have: becoming sluggish as the number of full duplex
users increases. If an interrupt is received every time a character is read and another when the echo
completes, a mainframe may not be able to support as many users per MIP as a minicomputer. The greater
expense of a mainframe justifies the cost of a front-end processor to relieve it of some of its I/O overhead
and thus use its greater computational power more effectively. This paper will discuss the implementation
of full duplex support in UTS, which uses an Amdahl 4705 as a packetizing front end processor for an
Amdahl 470 or 580 mainframe.

1. UTS FULL DUPLEX ENVIRONMENT

Before the architecture of UTS full duplex can be explained, an introduction to I/O on SystemJ370
compatible computers will be presented.

1.1 Systeml370 I/O Overview

I/O on a SystemJ370 computer is performed by a channel. an auxiliary processor that shares main memory.
A channel executes channel programs to transmit and receive data through main memory. It is connected
via cables to a channel adaptor in a peripheral controller. A channel program consists of one or more
channel command words, or CCW' s. A CCW is 64 bits long and has fields designating a command, operand
address. operand length, and numerous options. Execution normally proceeds through a sequence of CCW' s
until one is found with the command chain bit set to O. A special command. Transfer In Channel. or TIC
specifies that the next CCW to be executed is to be found at the address contained in the operand field of
that CCW. A typical CCW would be to read n bytes of data into a buffer.

The device address on which the I/O is to be performed is designated by an argument to the Start I/O or sio
instruction. by which the mainframe submits a channel program for execution by a channel. The device
address consists of a channel address. designating a particular channel, and a subchannel address. designating
a particular device attached to that channel.

The completion status of a channel program is presented as an interrupt in a channel status word, or CSW.
Besides the completion status. the CSW contains the address of the CCW that generated it. One of the
options available in a CCW. Program COiltrolled Interrupt. or pel. specifies that an interrupt is to be
received when that CCW starts to execute. In this way the progress of a long channel program can be

\. UTS is a tmdcm"rk of Amdahl Corporation.

-166-

monitored.

1.1.1 UTS I/O Scheduler UTS has an I/O scheduler that permits each driver to submit a channel program
and designate an interrupt routine to handle the interrupt. The scheduler queues such I/O requests to
minimize busy conditions on channels. controllers, and devices, and handle them when they do occur. If the
interrupt indicates an unusual termination, it requests sense data from the device and provides it to the
interrupt handler.

1.2 The 4705 Communications Controller

A 4705 is Amdahl's version of the standard communications controller for System/370. It can have up to
350 data lines attached to it. which are accessed by the host through up to 255 subchannel addresses. The
mapping from external lines to internal subchannel addresses is provided by the software in the 4705. A
4705 can support both asynchronous and synchronous data communications. It can be used for
communicating with remote job entry systems, line printers. and both ASCII asynchronous and EBCDIC
BSC terminals. It is often used to provide virtual terminal support from one computer to another. Since
these other communications media are often needed by UTS customers. the 4705 was chosen as the front end
processor for UTS full duplex communications. Figure 1 shows the physical configuration of the UTS full
duplex system.

rs232-cfu Iodem

imodeml

channel cable

Front End
Processor rs377 acuMainframe

-------- mOdem
Computer

Figure I. tITS Full Duplex Physical Configuration

1.2.1 4705 Software Various control programs with different capabilities can be be run in the 4705. The
one selected for UTS full duplex is the Emulator Program. EP. which emulates an older controller. EP is
available in public domain versions and can support half duplex ASCII terminals. Other vendors have
modified EP to provide X.25 support. so UTS customers with a 4705 can run full duplex. half duplex. X.25
and remote 3270 terminals through it. The modification made to provide UTS full duplex support in EP is
called UTSiF.

-167-

2. VTS Full Duplex Considerations

The two main constraints in designing tITS full duplex support was to provide a full duplex interface as
described in the System V termio manual page while reducing the amount of overhead normally incurred.

2.1 FuU duplex Requirements

The term full duplex means many different things to different people depending on their background. The
literal definition is that data can flow in two directions at the same time. Since the hardware in the 4705
that interfaces to asynchronous lines can only provide I/O in one direction at a time, we were required to
use two asynchronous lines for one full duplex line: one for reading, the other for writing.

Most UNIX2 users do not think of full duplex as simply handling I/O in both directions at once. Instead. they
associate it more closely with the following features.

2.1.1 Character by Character I/O Some data links. such as X.25. permit data to flow in both directions at
once, but packetize blocks of characters together for transmission. Data is only sent to the host when a line
end character is seen or a minimum number of characters is read. Although UNrx canonical input only
presents data to user programs when a line of data has been read. UNIX raw I/O presents individual
characters as they are typed by the user. Therefore, although a substantial overhead reduction can be
achieved by packeting the characters typed a line at a time, we could not rely on this for UTS full duplex
support.

2.1.2 Echoing The termlo manual page specifies that a user program can enable and disable echoing via an
loetl. The echoing can be performed by the front end processor if the iocd to turn echoing on and off is
transmitted to it. But since most users like knowing that what appears on their screen has been received by
the host computer, we decided to have the host echo.

2.1.3 uucp A major incentive for providing full duplex support is to run uucp to communicate between
systems. This requires dial out capability to initiate communications. Therefore, tITS full duplex support
was designed to permit the use of the standard library routine dial.

2.1.4 vi Editor The other popular program requiring full duplex support is the vi editor. As a measure of
compatibility. it was decided that UTS full duplex had to support the vi editor without modification. To do
this, the standard line discipline is used with the same termio structure, so that the TCSETA and TCGETA
ioetl calls have the standard UNIX behavior.

2.2 Overhead Reduction For Large Number of Users

Despite the above requirements. UTS full duplex must support many users without degrading performance.
To provide character by character I/O without receiving an interrupt for every character typed. UTS
multiplexes the data read from all the terminals on a 4705 onto a single packet subchanneI.

3. UTS FuU Duplex Solution

Figure 2 shows the logical configuration of UTS full duplex. Each terminal is accessed by UTS through its
own read and write subchannels. All data is written to the write subchanneI. The read subchannel is only
used to open the terminal and to receive line conditions. such as break and hangup. A single packet
subchannel per 4705 is used to receive the read data from all the terminals.

3.1 Full Duplex Packets

A packet of data is sent from the 4705 to the host every 100 milliseconds when there is data present. or
whenever its buffer fills up. This is sufficiently frequent to appear no slower that direct full duplex to most
users. Each packet contains a header and data sections. (See figure 3). The header contains status
information and the size of the data section. The header status, sense, and address are used to indicate

2. UNIX is a traucmark of AT&T &11 Lahoratoncs.

-168-

write
read ImodemI
write

read Imodeml

packet

write Front End
rp.:ui Processor acuMainframe

~ moaem
Computer

subchannels lines

Figure 2. UTS Full Duplex Logical Configuration

Packet

unused I address

status I sense

count

Packet Bodv

address I data

address I data

Figure 3. UTS Full Duplex Packet Format

overrun conditions on the packet subchannel or individual lines. The data section contains address/data
pairs. Each pair contains a byte of data and the subchannel address of the terminal that presented it.

3.2 4705 Software

The EP control program was modified to collect the data from full duplex lines in a common buffer instead
individually. The timer was used to generate an interrupt every 100 milliseconds (its finest granularity) and
the interrupt handler changed to check for presence of data to send to the host. Additional code was
written to handle the interface to the host on the packet subchannel. Autocall service was already provided
by half duplex code in EP. The autocall data is written via a separate line to the autocall unit attached to
the modem.

-169-

3.3 UTS Software

Two drivers are used for full duplex, the autocall (ACU) driver for out-dialing and the full duplex driver for
ordinary I/O.

3.3.1 ACU Driver The acu driver is only used to write the number that is to be dialed. This is done by
issuing a CCW with a special DIAL command on the write subchannel of a full duplex line. This is mapped
by the 4705 software to the autocallline.

3.3.2 Full Duplex Driver The full duplex driver must handle the read and write subchannels as well as
demultiplex the data from the packet subchannel to the respective tty structure within the kernel. Accessing
the driver only occurs through the line discipline. which handles buffering and copying data between the
user and the tty structure.

3.3.2.1 Opening a terminal If a terminal is being opened for the first time. an enable command is issued to
the read and write subchannels. These commands are processed by the full duplex software in the 4705.
The write subchannel will enable immediately and return an interrupt. The read subchannel will not enable
until the modem presents DSR. indicating a connection is made. This happens immediately for dedicated
lines and when a carrier is detected on dial up lines. Once the read subchannel is enabled. the count of
open terminals on this 4705 is incremented. If this is the first terminal open on this 4705, the packet line is
also enabled. When it enables, a channel program to read the packet subchannel is issued. After the
packet subchannel is initialized a read command is issued on the read subchannel and the open system call
returns. The read on the read subchannel is not issued to receive ASCII data, only to arrange for notification
when the line condition hangup or break occurs.

3.3.2.2 Writing to a terminal Writing to a terminal occurs through the line discipline. The driver itself
simply transfers data from the tty outq to the transmit buffer and uses a write CCW on the write subchannel
to write it.

3.3.2.3 Depacketing packets The channel program on the packet subchannel consists of a number of read
CCW's with the PCI flag turned on. followed by a TIC back to the first read CCW. Each CCW will read in
one packet. After the packet is read in the PCI in the next CCW causes an interrupt to be generated. The
CSW presented by the interrupt points back to the CCW that generated it: the previous CCW is the one that
just completed. Since the CCW contains the address of the buffer read in. the packet interrupt handler can
find the buffer just read. Its header specifies the number of data/address pairs to process. Using the address
of the packet subchannel and the subchannel addresses in the packet, the data is put in the rbut of the
respective tty structure. The standard line discipline transfers it to the rawq and performs canonical
processing.

The tic eliminates the need to reissue the command when it completes.

The purpose of chaining several reads together is that under certain conditions PCI interrupts can be missed.
By comparing the buffer address in the current CCW with the last one received, missing interrupts can be
detected and their packets processed.

3.3.2.4 Reading from a terminal Since data is received on the packet subchannel and put into the rawq
and canq, reading a terminal amounts to copying available data out to user space. and if none is present.
sleeping until it is available. This is handled by the line discipline.

3.3.2.4.1 Closing a terminal When the last file descriptor to a terminal is closed, the driver terminates the
read CCW on the read subchannel with a halt device command and issues disable CCWs on the read and
write subchannels. It decrements the count of open terminals on this 4705 and if this was the last one.
terminates the channel program on it.

3.3.2.4.2 Hangups A hangup is normally detected by the sense data returned on the read subchannel.
However, if the hangup occurs while data is being written to the terminal. the write channel command will
terminate with sense data indicating a hangup. In either case. the tty structure is updated to reflect its status
and a signal is sent to the process group sharing the terminal. Any process reading the terminal will be
returned a character count of zero. indicating the loss of carrier. The channel commands. if any. on the
read and write subchannels are terminated. It is expected that the processes with the tty open will soon

-170-

close it, either explicitly or by exiting.

4. Features

The UTS full duplex solution provides the following features.

4.1 Reduction of 1/0 Overhead

By eliminating the interrupt for every character received, nearly half the overhead in full duplex support is
eliminated. The largest single source of remaining overhead is in the single character writes incurred by
host echoing.

4.1.1 Performance Our largest customer installation has 355 full duplex lines on 5 4705' S, plus other
synchronous lines including computer-to-computer links. Line speeds vary from 1200 to 9600 baud. There
is no noticeable delay when typing.

4.2 IXONIIXOFF

IXON and IXOFF support is provided in the driver and line discipline. When a entrl s is received for a
terminal, the ttstop bit is turned on in its tty structure. While this bit is on the line discipline will not
present any data for writing and the driver will not transmit any data. When a entrl q (or any character if
IXANY is set) is received. the ttstop bit is cleared and any pending data written.

A problem exists because there is no way for the driver to terminate a write in progress and determine the
amount of data actually written. To avoid losing or repeating write data. the current write must complete.
A special wmax ioetl and stty option are provided to permit the user to specify how many characters to
write at a time, which controls how many characters may be transmitted after a entrl s is received. Values
between 1 and 255 can be specified; larger values provide greater throughput. smaller values quicken
response to entrl s.

4.3 Auto CaD Support

As mentioned above. the standard dial library routine is provided. Thus. full cu and uucp service is
available.

4.4 Use of Standard Hardware and Software

This solution required no additional hardware. Since the UTS group is mainly a group of programmers. this
was a great advantage.

The 4705 software relies on the asynchronous service present in EP software. Although it is always
preferable to not duplicate existing code. since there are no compilers for the 4705 and its instruction set is
obscure. it was desirable to minimize the amount of 4705 code written.

Similarly. the full duplex driver relies on the standard line discipline for buffering, canonical processing, and
post processing. This assures a uniform user'interface and again avoids duplicating exiting code.

4.4.1 Additional Services of 4705 Since the 4705 is the standard front end processor for Amdahl main
frames. using it for full duplex also makes it available for half duplex and synchronous communications.
often used for communicating with other mainframes and remote devices.

5. Complications

This section describes some of the restrictions and problems encountered.

5.1 Number of lines per 4705

Since there are only 255 subchannel addresses per channel. and each full duplex line requires two
subchannel addresses. at most 127 full duplex lines can be attached through one 4705. The 4705 is not able
to support even that many lines at high baud rates.

Each full duplex line interacting with three different subchannels introduces many complications handling
error conditions.

-171-

Most of the problems installing UTS full duplex arise from the fact that there are several separate
components that must be configured consistently. The packet, read and write subchannels are configured
into UTS but must also be reflected in the -1-705 EP generation and hardware. If UTS is running as a guest
operating system under VM, the VM configuration must also agree with the UTS and 4705 contigurations.

6. Other Possibilities

Several enhancements could be made to full duplex support that would reduce overhead or provide better
support.

Most of the interrupts serviced are due to echoing single characters. If a multiplexed channel for writing
was used, UTS could read lhe packets from the -1-705, modify them to reflect the data not being echoed, and
write the packet back to the 4705 for echoing.

IXON/IXOFF support could be handled more effectively in the 47 05, but this would requires its knowing
some of the stty settings. No mechanism currently exists to convey this information to it.

7. Conclusions

A front end processor for UNIX full duplex can effectively reduce VO overhead in a mainframe while
remaining transparent to users. Providing a mechanism to convey stty information to the front end would
permit oftloading more full duplex features, such as IXON/IXOFF. from the host.

8. Acknowledgments

I would like to thank the entire UTS group for their patience, insight, and support in developing the full
duplex driver. Special thanks to Y.C. Wang and Ludo Vennekens, who developed and support the full
duplex software in the 4705. I also thank my manager, Hal Jespersen, for encouraging me to write this
paper and his edi torial suggestions.

Multi-Processor Management
In The Concentrix Operating System

Jack A. Test

Alliant Computer Systems Corporation
42 Nagog Park

Acton, MA 01720

Abstract

Alliant Concentrix 1M is the native operating system of the Alliant multi-processor
machine family and is an enhanced and extended version of 4.2BSD UNIX 1M • Principal
features include: symmetric implementation of UNIX on a multi-processor architec
ture, a two-Gigabyte demand-paged copy-on-write virtual memory system, shared
library image support for user programs, and management of multiple processors
working concurrently on a single UNIX process. This paper describes the Alliant
machine architecture and discusses the multi-processor management aspects of the
Concentrix operating system.

Concentrix
UNIX

Trademark of Alliant Computer Systems Corp.
Trademark of Bell Laboratories

-173-

Multi-Processor Management
In The Concentrix Operating System

Jack A. Test

Alliant Computer Systems Corporation
42 Nagog Park

Acton, MA 01720

Abstract

Alliant Concentrix 1M is the native operating system of the Alliant mUlti-processor
machine family and is an enhanced and extended version of 4.2BSD UNIX Till • Principal
features include: symmetric implementation of UNIX on a mUlti-processor architec
ture, a two-Gigabyte demand-paged copy-on-write virtual memory system, shared
library image support for user programs, and management of multiple processors
working concurrently on a single UNIX process. This paper describes the Alliant
machine architecture and discusses the mUlti-processor management aspects of the
Concentrix operating system.

1.0 Introduction

Alliant Computer Systems Corporation designs and manufactures high-performance,
mUlti-processor computer systems designed primarily for use in scientific and engineer
ing applications. The Alliant machine architecture provides a tightly-coupled environ
ment consisting of interactive processors (IPs) and computational-elements (CEs) with
a coherent global memory system. While every IP and CE is a fully functional,
independent processor, CEs support integrated vector and floating point operations and
can, through integrated concurrency operations, participate together as a "computa
tional-complex" in the execution of a single application.

Alliant Concentrix, the native operating system for the Alliant mUlti-processor machine
family, is an enhanced and extended version of 4.2BSD UNIX. A specialized uni
processor version of Concentrix called Diagnostix 1M diagnoses hardware problems and
configures the system for Concentrix operation. Tasks such as microcode loading and
system sizing, for example, are handled by Diagnostix prior to Concentrix activation.

Concentrix
UNIX
Diagnostix

Trademark of Alliant Computer Systems Corp.
Trademark of Bell Laboratories
Trademark of Alliant Computer Systems Corp.

-174-

This paper is concerned with the multi-processor aspects of the Concentrix operating
system and is divided into three sections. Section 2.0 decribes the Alliant system
architecture, Section 3.0 discusses the major attributes of IF and CE multi-processor
support, and Section 4.0 discusses the management of CEs operating together on a
single UNIX process.

2.0 Alliant System Architecture

The Alliant computer architecture supports up to twenty processors working in parallel
to a coherent global physical memory. The processors fall into two classes: interactive
processors (IPs) and computational elements (CEs). A diagram of the full Alliant
architecture is shown below:

shaded area is minimum configuration

Figure 1: Alllant FX/8 System Architecture

As Figure 1 illustrates, the Alliant architecture is structured along interactive and
computational lines. The interactive processors provide device support and non
compute-intensive user application support while the computational elements provide
high performance computational power[1] .

2.1 Global Memory

At the center of the Alliant architecture is the global physical memory system. The
Alliant distributed memory bus (DMB) is a high speed, synchronous access bus that
consists of two 72-bit-wide data paths (64 bits of data plus eight bits for single-bit error
detection and correction and double-bit error detection), a 28-bit address bus, and a
control bus. The data buses are bidirectional and driven by the memory and cache
modules.

-175-

Memory modules are built with 256K dynamic RAMs and are field expandable in 8-Mb
increments up to 64-Mb. Each memory module is four-way interleaved and can supply
the full DMB bandwidth of 188-Mb per second for sequential read accesses and 80 per
cent of the bandwidth, or 150-Mb per second, for sequential write accesses. In order to
bypass hard component failures, memory modules are reconfigureable to 6-Mb or
4-Mb.

2.2 Coherent Cache System

The Alliant memory cache system is responsible for maintaining a coherent view of
global physical memory to both IPs and CEs. There are two cache module types: the
computational processor cache (CPC) and the interactive processor cache (IPC).

Each CPC is a two-way interleaved 64-Kb module that can interface up to four CEs to
the DMB. When combined to support a full eight-CE complex, two CPCs provide a
four-way interleaved 128-Kb cache with a maximum bandwidth of 376-Mb per second.

Each IPC is a 32-Kb module that can interface up to three IPs to the DMB. When
combined to support a full 12-IP configuration, four IPCs provide a 128-Kb cache with
a maximum bandwidth of 188-Mb per second. In the smaller Alliant FX/l architecture,
the IPC can be used to interface one CE and two IPs to the DMB.

2.3 Interactive Processors

The Alliant interactive processor (IP) module is a Multibus card containing a Motorola
68012 microprocessor operating at 11.76 NtHz. The IP module contains 512-Kb of local
memory, a virtual memory address translation unit, an I/O map, power-up EPROMs,
and two serial ports.

The IP interfaces to the global memory system via the IPC and to peripheral devices via
the Multibus (IEEE 796 compatible). Direct memory access anywhere within the physi
cal address space, including cross page transfers, is available to peripheral devices via
the IP's I/O map.

2.4 Computational Elements

The Alliant computational element (CE) is a Motorola 68020 instruction set com
patible, microprogrammed, pipelined processor with integrated floating point, vector,
and concurrency instruction sets. The Alliant concurrency instruction set allows CEs to
work together as a computational-complex (CE-Complex) on a single application.

Individually, each CE can deliver 4450 KWhetstones single precision (32-bit) and 3630
KWhetstones double precision (64-bit). In vector mode, each CE can execute at a peak
rate of 11.8 million floating point operations per second (IvlFLOPs) single precision

-176-

and 5.9 lvtFLOPs double precision. When configured as a complex, the speedup
delivered to a single application approaches the number of CEs installed.

3.0 Multi-Processor Symmetric Implementation

One of the major attributes of Concentrix is that it runs symmetrically on all
processors in the system. Both IPs and CEs execute a common image of the operating
system and coordinate over critical code regions and data structures via a global
locking scheme. The principal difference between IPs and CEs insofar as kernel-mode
execution is concerned, is that only IPs execute device interrupt code (see Section 3.4).

3.1 Computing Resources

There are two classes of computing resource in the Alliant system: individual IPs and
the CE-Complex as a whole. Scheduling in Concentrix is centered around the
computing resource classification, each IP is scheduled independently while the CEs in
the complex are scheduled as a unit. As each process is created, the image executed
determines the type of computing resource on which the process can be scheduled. In
particular, images that use vectorization and concurrency are schedulable only on the
CE-Complex, other images are schedulable on IPs or the CE-Complex. At any given
moment, every computing resource in the Alliant system is executing a different
process. When a processor has no real work to do, it runs an "idle" system process.

3.2 Global Locking

In a single-instruction-stream/single-data-stream (SISD) uni-processor architecture (the
traditional UNIX host) there is, as the name implies, only one active stream of execu
tion at a time. The active stream can be either a system-stream or an interrupt-stream. A
system-stream is a code sequence that can switch between user-mode activity and
kernel-mode activity via change-of-mode traps such as system calls or memory
management exceptions. An interrupt-stream is a code sequence that executes entirely
in kernel-mode and is initiated by an external hardware event at a specific priority
level.

In standard uni-processor UNIX, there are both implicit and explicit forms of
synchronization. UNIX enforces implicit synchronization between system-streams by
not allowing one system-stream to be preempted by another (i.e., a system-stream in
UNIX must explicitly give up the processor before another system-stream can be
scheduled to run). System-streams in UNIX explicity protect themselves from conflicts
with interrupt-streams over critical code sections by raising processor priority level.

In the Alliant mUlti-processor architecture the synchronization problem is more compli
cated. In particular, the following types of stream interaction can occur:

-177-

• A system-stream conflicting with an interrupt-stream on the same processor
(this is the traditional uni-processor interaction mentioned above).

• A system-stream on one processor conflicting with a system-stream on
another processor (implicit synchronization no longer holds).

• A system-stream on one processor conflicting with an interrupt-stream on
another processor (raising priority level is not sufficient here).

• An interrupt-stream on one processor conflicting with an interrupt-stream
on another processor (raising priority level is not sufficent here).

In order to resolve stream interaction conflicts, Concentrix utilizes both priority level
locking and a hierarchy of global test-and-set based locks for synchronization purposes.
Priority level locking is used to handle system/interrupt-stream interactions within a
single processor. Global test-and-set locking is used to handle multi-processor inter
actions. Functionally, each global lock consists of a access-location, a processor-tag, a
priority-identifier, and a recursion-counter.

• The access-location is used for atomic test-and-set operations by processors
contending for the lock.

• The processor-tag records the indentification number of the processor that
currently has access to (owns) the lock.

• The priority-identifier is used to administrate a locking hierarchy for dead
lock avoidance.

• The recursion-count records how many times the lock has been reacquired
on top of itself.

Locks in Concentrix are "spin-wait." In other words, a processor contending for access
to a lock "spins" (tries continuously) until access to the lock is gained. In practice, the
spin-wait scheme works well because care has been taken to minimize lock holding
time in critical code sections.

Concentrix tracks the lock states of processes by maintaInIng a lock-stack for each
process. As locks are acquired by a process, they are pushed onto its lock-stack; as they
are released they are popped from its lock-stack. The lock-stack is recorded and main
tained for each process in its kernel user-area and is preserved across process sleeps.
All of the locks held by a process are released in reverse lock-stack order upon going to
sleep and are reacquired in lock-stack order when the process wakes up.

The ~tX teletype system provides a good example of how the Concentrix locking
scheme is used. In 4.2BSD UNIX, access to the teletype subsystem is synchronized
using specific priority level locking. In Concentrix, each individual teletype has a global
lock used to synchronize access to it. In addition, each teletype specifies the set-

-178-

priority-level routine to be invoked when acquiring the teletype lock. Thus, pseudo
teletypes can run at zero-priority instead of raised priority as in 4.2BSD UNIX. When
teletypes run out of character storage the UNIX cfreelist code is activated. In Concen
trix, access to the common cfreelist code is synchronized with a cfreelist-Iock. The
cfreelist-Iock has a higher priority-identifier than the teletype-lock, enforcing a locking
hierarchy that prevents acquisition of the teletype-lock by a process already holding the
cfreelist-Iock. The teletype-lock recursion-count tracks multiple accesses to the teletype
within the system and provides for correct unwinding out of the code. To summarize,
the Concentrix teletype system, by locking at the individual teletype level, achieves a
high degree of concurrency. Multiple teletypes can be serviced simultaneously and
interaction between teletypes (an infrequent occurrence) is confined to the cfreelist
code.

3.3 Processor Communication

The underlying mechanism provided by the Alliant architecture for inter-processor
communication is a cross-processor-interrupt (CPI) facility. The CPI facility allows any
processor in the system to interrupt any other processor in the system. CPls can be
directed to a specific processor or to a set of processors via a selective broadcast.
Concentrix uses the CPI mechanism primarily for activating remote procedure calls
(RPCs) on other processors, initiating remote asynchronous system traps (RASTs) on
other processors, and for synchronizing the CE-Complex. CPIs occur at a level suf
ficient to preempt all device interrupts except the system clock and a non-maskable
condition.

The RPC mechanism is used primarily to activate routines that modify remote proces
sor or device state. For example, code that changes kernel virtual memory mapping
can use a broadcast RPC to initiate translation-buffer flushes on all processors in the
system. Asynchronous and synchronous RPCs are implemented using a global mailbox
facility for passing arguments; target processors use a software-inititiated interrupt
stream facility to actually perform the RPC. Asynchronous RPCs suspend the calling
processor until all target processors have posted a software interrupt to perform the
RPC. Synchronous RCPs suspend the calling processor until all target processors have
actually performed the RPC.

The RAST mechanism is used primarily to reschedule remote computing resources,
deliver signals, and perform user profiling. ASTs are implemented in the Alliant
architecture through careful use of the Motorola 68020 trace-trap mechanism [2] .

3.4 Distributed Input/Output

The Alliant architecture supports up to 12 interactive processors each with a private
Multibus. Each Multibus device in the system is dependent upon a particular IP for

-179-

configuration and interrupt servicing. At system boot time, each IF configures its own
Multibus by probing for attached devices and initializing the devices that it finds.

Multibus device addresses are administered on a global level so that conceptually there
is one combined Multibus that contains all devices in the system. Thus, no two devices
can have the same Multibus address since a board's address identifies it in a system
wide manner. The advantage of this approach is that if a controller board, for example,
is moved from one Multibus to another, there is no visible effect functionally to the
system as a whole (Le., logical device names still map the same physical devices). As a
consequence, interrupt load balancing can be performed by rearranging controllers on
Multibuses without changing the system interface to the devices supported. A special
case of interrupt load balancing, for example, could be used for real-time data process
ing. Attaching a real-time data gathering device exclusively to an IF guarantees im
mediate interrupt response because the IF has no other devices to service.

Device drivers in Concentrix manage the distributed device environment by careful use
of global locks and remote procedure calls. In particular, drivers handle the general
case where a I/O system call is made to a device that is "remote" to the processor (CE
or IP) performing the call. In general, drivers are constructed so that an I/O call is
allowed to proceed up to the point where actual device contact is required (Le., where
device control registers need to be "touched"). At that point an asynchronous RPC is
initiated by the driver to activate a device control procedure on the IP that services the
device.

4.0 CE-Complex Support

The most powerful feature of the Alliant architecture is the ability to apply multiple
CEs concurrently to the execution of a single user application in a transparent way.
Concentrix is responsible for coordinating the CE-Complex during the execution of
concurrent processes.

Alliant concurrency uses the program loop construct as the source of parallel instruc
tion streams. For example, when the Alliant FXIFortran compiler detects loops that
can be executed in parallel, it automatically generates code containing concurrency
control instructions. Loops with conditional code, data dependencies, subroutine calls,
potential feedback, and loop exits, can be optimized for parallel processing; such loops
run serially on conventional vector computers [3] .

Control of the CE-Complex executing a program such as that shown in Figure 2
represents a second level of mUlti-processor management within Concentrix. In
particular, Concentrix manages both synchronization between multiple active processes
(as discussed in Section 3.0 above) and synchronization among multiple active code
streams within a single process (discussed below).

-180-

___cE_o 1 1'-__CE_1 1 1 CE_2__

TIME
SERIAL CODE

DO 24 1=1,6

X =FT(1)- FLOAT(N)
X2 = 2.- X

X21 = X2 - 1-
OF = X21/X2

OF1 = DF-R
DF2 = DF1- OF1

FF =F(1) + OF2
F(1+1 FF

AF = ABS(OF2/F(I+1»
IF(AF.LE.EPS)GOTO 25

24 CONTINUE

X =FT(4)- FLOAT(N)

X2=2.-X

X21 = X2 - 1-
OF = X21/X2

DF1 = OF-R

DF2 =OF: 1
FF F(4 + OF2

(I +4 = FF

AF =ABS(DF2/F(I+1»
IF(AF. LE. EPS)GOTO 25

24 CONTINUE

IDLE

IDLE

X =FT(2)- FLOAT(N)
X2=2.-X

X21 = X2 - 1-

OF = X21/X2

OF1 =OF-R

OF2 =DF1-0F1

~.....F..,.:.(2-, + DF2
F(I +2 = F

AF =ABS(DF2/F(I+1»
IF(AF. LE. EPS) GOTO 25

24 CONTINUE

X = r FLOAT(N)
=2.- X

X21 = X2 - 1.
OF = X21/X2

OF1 =DF-R

DF2 =DF1- OF1

FF F(5 + DF2
(I +5 =FF

AF =ABS(DF2/F(I+1»
IF(AF.LE.EPS)GOTO 25

24 CONTINUE

IDLE

IDLE

x =FT(3)-FLOAT(N)
X2 = 2.- X

X21 = X2 - 1.
OF = X21/X2
OF1 = OF-R

OF2 =OF1- OF1

- F(3) + OF2

(I +3 =FF

AF = ABS(DF2/F(I+1»
IF(AF. LE. EPS) GOTO 25

24 CONTINUE

X =FT(6) -FLOAT(N)

X2 =2.- X
X21 = X2 - 1.
OF = X21/X2

OF1 = DF-R

DF2 =DF1- OF1

FF F(S + OF2
F(I +S) = FF

AF = ABS(DF2/F(I+1»

IF(AF. LE. EPS)GOTO 25

24 CONTINUE

SERIAL CODE
CONTINUES

Figure 2: Concurrent Processing With Data Dependencies

4.1 Concurrency Management

In order to manage a process with multiple code streams, Concentrix replicates a
number of kernel data structures. For example, up to eight kernel stacks and eight
processor-control-blocks (PCBs) may be required per concurrent process, allowing each
CE in the CE-Complex to have a separate kernel stack for kernel-mode execution, and
a separate kernel-mode register-save-area for context switching. Concentrix allocates
replicated resources on a per process basis. For example, non-concurrent processes
need only one kernel stack, while concurrent processes on a three-CE complex need
three kernel stacks.

As mentioned earlier, the CE-Complex is managed at a macro level as a single
computing resource by Concentrix, allowing all CEs in the CE-Complex to be

-181-

scheduled as a unit to a single UNIX process. At a micro level within Concentrix, the
CE-Complex alternates between collapsed and expanded states when executing a
process. In the expanded state, all CEs in the complex function independently and
coordination, if any, between CEs is limited to the hardware concurrency level. In the
collapsed state, one CE, known as the lead-CE functions independently while all other
CEs await process-switch or expand-complex directives from the lead-CEo

In general, collapsing of the CE-Complex is required when access to the machine state
of all the CEs in the complex is needed. For example, process context switches, fork()
and exec() system calls, and signal delivery collapse the CE-Complex. Most system
calls do not require collapsing the complex so it is possible to have one CE in the
kernel performing a system function while the other CEs are executing in user-mode.
The CE-Complex is managed with minimal operating system overhead because the
collapse/process-switch/expand functions are highly optimized and invoked only when
absolutely necessary.

Internal management of the CE-Complex is governed by a complex-control-block
(CCB). Conceptually the CCB consists of a global complex-lock, a sync-counter-Iock,
and various other control fields. Leadership of the CE-Complex and the right to issue
collapse/process-switch/expand directives belongs to the CE that has access to the
complex-lock. The sync-counter-Iock is used to internally synchronize the CEs when
performing collapse, process-switch, and expand functions.

4.2 Context Switching

Context switching the CE-Complex is complicated by the fact that the lead-CE going
into the switch may not be the lead-CE coming out of the switch. This complication
occurs because the lead-CE generally is not the same between processes. The CE
process switch code, therefore, must often arrange a leadership role-swap between
CEs.

4.3 Signal Delivery

Because signals are asynchronous, a process can be in concurrent execution on the
complex when a signal is delivered. The policy in Concentrix is to collapse the
complex and to deliver the signal on one CE while the other CEs are held in the kernel.
The CE that delivers the signal is temporarily "detached" from the complex so that if a
signal routine should issue concurrency directives they would have no effect on the
complex as a whole.

The complete register state of the CE that delivers the signal is available to the signal
handler, including all general, floating-point, vector, and concurrency registers. Signals
are nestable; the CE servicing the original signal services the nested signal. The other
CEs in the complex remain held in the kernel. Only when the original signal handler

-182-

returns, is the complex expanded and all concurrent CEs returned to what they were
doing prior to the original signal delivery. In effect, while servicing a signal(s), the
process is run on a one-CE-Complex. In order to restore the process to running on the
full CE-Complex, signal processing must unwind, or the setjmp/longjmp mechanism
invoked.

The Concentrix approach to signal delivery for concurrent programs is transparent and
provides full signaling capabilites. The only limitation is that signal handlers cannot
benefit from parallel execution (i.e., concurrency directives within signal handlers do
not activate other CEs).

5.0 Summary

The Concentrix operating system manages two levels of multi-processor interaction
within the UNIX kernel framework. Multiple active processes running on both the CE
Complex and on independent IPs share a common version of the operating system and
coordinate over critical resources via a global locking scheme. Within the CE-Complex,
multiple active code streams coordinate over kernel access and upon the execution of a
single UNIX process.

The Alliant system is able to provide good interactive and computional performance at
the same time by concentrating interactive applications in IPs and computationally
intensive applications in the CE-Complex. Support for distributed 110 allows devices to
be administered in a global manner among as many as 12 Multibuses.

Acknowlegments

Concentrix was developed by Larry Bakst, Herb Jacobs, Tom Jaskiewicz, Charles
Monia, Roger Roles, and Jack Test. The author wants to thank Bob Perron for his help
in obtaining the diagrams used in Figures 1 and 2. Special thanks go to Barry Rogoff
for his expert help in editing and typesetting this paper.

References

[1] FXlSeries Architecture Manual, Alliant Computer Systems Corporation, Acton,
Mass., May 1985.

[2] MC68020 32-Bit Microprocessor User's Manual, Motorola Inc., Prentice-Hall,
Englewood Cliffs, N.J., 1984.

[3] FX/Series Product Summary, Alliant Computer Systems Corporation, Acton,
Mass., June 1985.

A User-tunable Multiple Processor Scheduler

Herb Jacobs

Alliant Computer Systems
Acton, Massachusetts

Usenet Address: decvax! linus! alliant! jacobs

Abstract

The conventional Unix scheduler deals with the question of which process to schedule. In a multiple
processor configuration. the question of where to schedule a process is an essential element in all
scheduler decisions. Concentrix™ (the Alliant version of 4.2 BSD UNIX TM) supports multiple processor
configurations with variable numbers of processors of differing speeds. This paper discusses the
implementation of the Concentrix scheduler and some of the unique ways in which it allows UNIX to be
used.

The solution used in Concentrix is an intelligent, distributed class scheduler that is table driven and
user-tunable: the super user can dynamically modify the tables. The overhead is proportional to the
number of processors being scheduled and is quite small. Thus. it is low enough to be practical in single
processor configurations.

When used with multiple processors, this style of scheduler allows UNIX to satisfy a large set of real-time
applications better than many conventional real-time systems. The overheads associated with context
switching and system calls for interprocess communication are totally eliminated, resulting in better
response. More importantly, real-time applications can be programmed in a UNIX environment with
modest effort by configuring the scheduler. rather than trying to change UNIX itself into a real-time
operating system.

™ Concentrix
™ UNIX

Trademark of Alliant Computer Systems
Trademark of Bell Laboratories

-184-

Introduction

Faster computing systems remain a challenge. Supercomputers are evolving toward multiple processor
configurations to achieve higher computational power. In solving a single problem, single processor
systems are limited in speed by current technology and ultimately by the laws of physics. Multiple
processor solutions offer a multiplicative speed improvement for problems that can be solved in parallel.

Multiple processors need not be identical. Depending on the type of problem being addressed, hardware
built to deal with specific aspects of a problem can yield a better overall system solution in terms of cost
and performance. It makes little sense to use a high-performance vector processor to service
input/output requests.

The computer industry is just beginning to explore the use of multiple processor systems to speed up
single problem solutions. Compared to more costly technologies such as submersion cooling and gallium
arsenide, multiple processor configurations currently present the most promising solution to faster
computational systems.

As computer systems evolve, more sophisticated scheduling techniques are needed to attain the
expected performance levels. The scheduler presented in this paper solves the problem of assigning work
to non-identical processors in a multiple processor hardware configuration. In the course of developing
the scheduler, an interesting result presented itself: a large set of real-time problems can be addressed
with absolute predictability, even within the confines of UNIX.

Overview

In an operating system, scheduling is overhead that attempts to provide some kind of deterministic
behavior on behalf of consumers of the hardware resources. As currently implemented, most versions of
UNIX actually have two schedulers. The job or process scheduler manages multiple tasks, owned by
independent users, by allocating cpu time to processes. Multiple program execution serves two primary
purposes; it attempts to use the hardware resources (peripherals, processors, and memory) as efficiently
as possible, while allowing several different users access to the system at what appears to be the same
time. The swap or memory scheduler deals with sharing available physical memory among active
processes. Although a more optimal scheduling algorithm could be built by combining both schedulers,
the problems are different enough so that two independent schedulers are a practical solution.

The first schedulers appeared with and played an integral part in the transition from standalone, single
job operating systems to multiple task operating systems. Once systems began to deal with more than one
job at a time, schedulers were needed to implement policy. Multiple program and multiple processor
environments further complicate scheduling. The environment addressed by the Concentrix scheduler
involves multiple processors of different types. Some applications can run on any processor, while others
may have to run on a single unique processor or even a set of specific processors. This is analogous to
using a team solution to a problem. Some members of the team can contribute to almost any part of the
problem while others are experts in specific aspects. There is typically an optimal set of assignments for
the team members.

Assigning work in a non-identical hardware environment is a much more complex problem than
assigning work to identical processors in a multiple processor configuration. There are hardware
solutions in use in industry today that deal with identical multiple processor environments. However, the
problem of dealing with non-identical processors was difficult enough so that a software, rather than
hardware, solution was used to implement the algorithm. The overhead in the software algorithm is small

-1.85-

enough to make it practical in a wide variety of hardware configurations. Actual performance by this
scheduler has been measured with different combinations of hardware from a single processor system up
to 14 processors with three different functional capabilities. Although it varies with workload and
number of processors t the scheduler overhead in a 14-processor system in use today averages about five
percent of one of the low-speed processors in the system as measured by a kernel profile. The
configuration on which the measurements were taken contains six low-speed and eight high-speed
processors.

The Conventional UNIX Scheduler

A brief discussion of the conventional UNIX scheduler is given here to help present the differences
between it and the Concentrix scheduler. The primary characteristic of the UNIX scheduler is to give
priority to the smallest CPU consumers. At a regular interval (normally one second) t the scheduler
reassigns priorities to all processes based on CPU usage in the last interval. UNIX priority values
represent CPU consumption; the smallest CPU consumers get the highest priority (the smallest value).
The more CPU time usedt the higher the i-priority (inverted-priority) of the process. At a smaller
interval (typically 1I10th second) the process with the lowest i-priority that is ready to run is started. At a
yet smaller interval (typically the real-time clock interrupt rate) the i-priority is incremented for the
active process.

As a process becomes compute-boundt its i-priority increases making it less likely to be selected. As a
process remains idle, its i-priority decreases making it a likely to be selected when it becomes ready to
run. As processes are running, their i-priorities creep upward, causing somewhat of a round robin effect
between similar competing processes. In a purely interactive environment, with all users considered
equalt this works reasonably well. Howevert many sites require users or applications to have higher or
lower priority than normal.

Simply extending the notion of the UNIX scheduler to multiple processors leads to a ripple effect for
individual processes. In other words t when a new high-priority process becomes runnable, assigning it to
a specific processor displaces another process, which displaces another process, and so forth. Although
the process shuffling problem can be addressed in several different wayst the object should be overall
satisfactory system performance. The severity of the problem on a specific hardware configuration can
be measured in terms of the context switch time between two processes. An approximation for the case
of identical processors:

ALST = CST X APA X NP / 2

where:
ALST
CST
APA
NP

Average Lost System Time
Context Switch Time
Average Process Activations
Number of Processors

From measurements on an early five processor systemt system overhead became significant enough to
warrant this project.

-186-

Design Goals

This is an excerpt from the original proposal for the Concentrix scheduler. The design goals for the
project, in estimated order of importance, are:

1. Provide a tunable scheduler that allows customer control over a wide variety of CPU job
environments.

2. Keep it simple.

3. Scheduling must be efficient, that is, not create any kind of bottleneck.

4. For interactive systems, response must look snappy.

5. Provide a default policy that is sufficient for non-extraordinary needs. That is, the distributed system
must work for a typical site.

6. Allow predictable CPU consumption for a process and for groups of processes.

7. Build the implementation in a manner such that it can be a basis for continued added value.

Feedback Schedulers

In a feedback scheduler, priority adjustments are assigned according to specific types of work. The type
of work actually done by a process affects its priority. A scheduler designed to provide good interactive
response time would assign high priority to processes finishing terminal input reads. Thus,
keyboard-intensive programs such as text editors would respond quickly. Similarly, a scheduler designed
to maximize disk bandwidth would assign high priority to completed disk reads.

The traditional UNIX scheduler is not a true feedback scheduler. The portion of the algorithm that
lowers process priority as a process remains compute-bound can be considered a feedback effect.

Class Schedulers

In a class scheduler, processes can be assigned arbitrarily to one of several classes. Resource usage can
then be controlled by class. The purpose is to distinguish among users having different and possibly
explicit resource requirements. Different priorities and time slices can be associated among classes. For
example, real-time processes that must respond within constrained timing windows can be assigned to a
high-priority class and be scheduled independently from the normal workload.

The Concentrix Scheduler

The Concentrix scheduler is implemented as both a class and feedback scheduler. A feedback scheduler
exists within the class scheduler mechanism.

At anyone time, the resource pool to be scheduled consists of a collection of individual processors plus
an optional group of processors, the computational complex. The individual processors themselves need
not be identical; in the actual system implementation there are two different types of processors. Up to
12 low-speed processors are used for input/output and utility operations. Up to eight high-speed vector

-187-

processors perform general purpose computation. Any subset of the high-speed processors can be
grouped into a computational complex that is considered a single resource.

In the Concentrix scheduler, a class is a purely logical concept. The scheduler itself has no knowledge of
what it means for a process to be in a class, only how to schedule classes. By default, assignments of
processes to classes take place in the fork and exec system calls. Fork propagates the class of the parent
process to the child process. Exec assigns a class to a process as described by the image. Exec is the only
place in the kernel that a relationship between processes and classes is made. This is primarily a
convenience for the user. The user can construct an arbitrary program and exec associates the resultant
process with a class that can run that specific type of program. Explicit assignment of a process to a class
can be accomplished by the privileged system call:

setclass(pid, class)

For efficiency eight classes were chosen for the current implementation. Each of the eight classes
contains eight priorities for the feedback scheduler mechanism. In effect there are 64 run queues in the
implementation. When the scheduler is assigning processes to resources, assignment is made on a strict
priority basis within class. The scheduler is preemptive within the feedback priorities in a single class.
The feedback condition that raises priority occurs when a process voluntarily blocks itself; it is raised in
priority by one notch unless blocked on keyboard input, in which case it is raised to highest priority. The
feedback condition that lowers priority is the completion of a time slice. Lowering priority removes the
process from the current run queue and places it at end of the next lowest run queue. If a process is at
the lowest priority within a class, it is simply placed at the end of the current (lowest priority) run queue.
When a time slice is preempted by a higher priority process, the elapsed portion of the current time slice
is remembered and when the process is rescheduled, only the unused portion of the time slice is allotted.

Also, for efficiency of implementation, all processes that are possible candidates to run are kept on a run
queue, even if they are currently running. Each resource runs a privately owned system null process
when there is no real work for it to perform, which facilitates data gathering and system accounting.

The scheduler subroutine that maps processes to resources is a two-pass algorithm. The passes occur
over the available set of resources. The first pass weakly assigns to resources processes that either must
run on a specific resource or are very close to the ends of their time slices. The second pass performs
assignments of processes by priorities to available resources, but attempts not to move processes around
nor to break explicit assignments already performed. In actuality, the subroutine creates a list of process
to resource assignments. The list is compared to the current mapping of processes to resources and those
resources that need to be reassigned are notified. The resources themselves perform the process
switching.

The original design assumed that it would be possible to schedule processes according to the state
changes occurring in the set of runnable processes. The implementation of this approach turned out to
be too complicated. When there is a poor match between processes and resources, too much
special-case handling is needed.

Instead, effort was focused on an efficient algorithm to do a top down assignment of resources, using the
current set of running processes as an input. To further reduce overhead, effort was given to eliminating
unnecessary scheduler invocations. For example, if a low priority process reaches the end of a time slice
and there is no other low priority process ready to run, it gets another time slice with no rescheduling of
other resources.

-188-

The scheduler itself can be invoked from any processor in the system. Statistics were gathered to identify
the conditions under which scheduling occurs. This was done with combinations of actual interactive
load and artificial load via the AIM@ benchmarks. Data was collected on three different combinations of
processors.

System A

System B

System C

one low-speed processor

one low-speed processor,
one high-speed processor

six low-speed processors,
four high-speed processors,
one high-speed four-processor
computational complex

8 Megabytes of memory

8 Megabytes of memory

32 Megabytes of memory

Time measurements alone vary with the number of processors. Under similar workloads, system calls
provide an accurate measure of work being done and are independent of a system's computational
power. The numbers shown are the averages of several runs.

Reason for scheduler invocation
Process wakeup (includes child of fork)
Process sleep
Time/Class slice
Process terminating
Process entering new class as result of exec
Process blocking itself in ptrace
Process binding itself to explicit resource
Process unbinding itself from explicit resource
Process swapped into memory
Process signaled to stop
Runnable process being outswapped

System Calls x 1000
System A System B System C

143 127 159
121 104 133
118 108 106
22 22 24
19 19 19
000
000
000
000
000
000

Process context switches 276 287 389

The following data is configuration dependent, and no attempt has been made to normalize it.

Item
Process context switches/second
System calls/second

System A
12
43

System B
37
125

System C
152
416

As the number of processors increases, the number of context switches per second increases. Context
switches are not desirable, and initially it appeared as if too many were occurring on the larger
configurations. Further analysis shows that more work is being done per unit of time and, as a result,
more blocking transactions occur per second, hence a higher context switch rate should be expected.

All\¥> Benchmark is a copyright of AIM Technology

-189-

Class scheduling and multiple processors

Each resource in the system configuration is driven by a scheduling vector, a table unique to the
resource that describes how that individual resource is to be scheduled. A scheduling vector determines
the classes of work that can be processed by the resource. Thus, programs can be restricted to specific
resources by means of class assignment. Programs that use the vector instruction set belong to a class
that is restricted to either one high-speed processor or the computational complex. Other programs
belong to a class that can run on any resource whose scheduling vector allows it.

The scheduling vector contains a list of time durations each of which is associated with a priority-ordered
list of classes. The Concentrix scheduler is preemptive; if a process of higher class priority within the
current time duration becomes available, it can preempt and displace the current process. If no work is
available in the highest-priority class, the resource accepts work from the next highest-priority class, and
so forth. For example, from a processor's standpoint, a scheduling vector might appear as:

300 milliseconds 1 4 5

400 milliseconds 5

For 300 milliseconds, the resource would attempt to perform class 1 work; if none were available, it
would attempt to perform class 4 work; if none were available, it would attempt class 5; and if none were
available, it would go idle until the end of the interval. Then, for 400 milliseconds, it would attempt to
perform class 5 work; if none were available, it would go idle until the end of the interval, then return to
the 300 millisecond interval. Thus, the resource would spend ~ of the time trying to perform class 1
work and ~ of the time trying to perform class 5 work. In order to avoid wasting valuable resource
cycles, a full list of resource classes can be placed in each time interval so that no available work is
missed.

Providing each resource with its own scheduling vector creates an extremely powerful mechanism. A
specific process can be guaranteed high priority service by placing it in a unique class and setting the
scheduling vector for the resource on which the process is to be serviced to treat that class as highest
priority. While the process is inactive, the resource would perform other work as described by the
remainder of the scheduling vector. When the process activates, the resource automatically becomes
available to service it.

Depending upon application requirements, the concept can be expanded to use multiple processes on
multiple resources. For example, a resource can be dedicated to servicing a graphic display device,
another to servicing a real-time input device, and others to performing high-speed computation. The
overheads associated with context switching and system calls for interprocess communication are totally
eliminated by the use of multiple processor hardware, resulting in better response than can be obtained
on conventional real-time systems. Thus, on a multiple processor system, real-time applications can be
programmed in a UNIX environment with modest effort by changing the scheduler, rather than trying to
change UNIX itself into a real-time operating system.

This ability is used to a limited extent in Concentrix. Many of the system processes are restricted to
specific processors for efficiency. The swapper process, for instance, is restricted to the resource
attached to the primary swapping device, eliminating the cross-processor messages that would otherwise
be needed to allow the swapper process to perform its I/O.

-190-

Some typical scheduling problems and possible solutions using a class scheduler are:

Run an interactive system with some very low priority background work.

Reserve a class x for the low priority background work. Processes enter class x only under explicit
request, the system never performs automatic assignment of work to class x.

The scheduling vectors for all processors that cannot process class x do not contain class x in their class
descriptions. The scheduling vectors for processors that can process class x jobs contain class x as the
lowest priority class in the scheduling vector. When no other work is available, processes in class x are
processed on the appropriate resources.

Guarantee 40 percent 0/ the processing power to a special group of users who are also allowed to
consume more 0/ the resources if there is no other load. Allow users not in the special group to consume
more of the resources if the special group is not using the allotted 40 percent.

When logged in, a special user is assigned to class s; others are assigned to class n. The scheduling
vectors for the resources appear, for example, as:

240 milliseconds s n

360 milliseconds n s

The choice of 600 (240+360) milliseconds as the round-robin time for the classes is a tradeoff between
the number of involuntary context switches forced by class slicing and the delay before servicing
processes in other classes. On an interactive system, latencies need to quite small (a delay of .2 seconds
is not unreasonable). Multiple resources improve the latency significantly. As the number of resources
grows, the class slice round-robin time can be increased, reducing involuntary context switches.

In systems with non-identical processors the tables and the class assignments are more complicated.
Special users receive a reserved class for each type of available resource. Other users likewise receive
classes for each available resource. When a process is created, a default set of classes is propagated from
parent to child. The classes can be controlled via a site-dependent database.

The scheduling vectors for each resource describe the possible classes to be scheduled in terms of the
work performed by the resource. Resource A as shown chooses work only from classes sl or nl.
Resource B only performs work from classes sl, s2, nl, and n2. Since resource A is performing work in
classes sl and nl, resource B is configured to favor classes s2 and n2.

Resource A

Resource B

320 milliseconds s1 n1

480 milliseconds n1 s1

280 milliseconds s2 s1 n2 n1

420 milliseconds n2 n1 s2 s1

-191-

Alternatively, the scheduling vector for resource B can be configured with explicit time slot entries for
each of the four classes.

Resource B

180 milliseconds s2 s1 n2 n1

270 milliseconds n2 n1 s2 s1

180 milliseconds s1 s2 n1 n2

270 milliseconds n1 n2 s1 s2

Multiple Processors and Real-time

The four main events that activate the scheduler are process sleeps, process wakeups, time slicing, and
process terminations. An application being designed to run in a multiple processor environment with a
class scheduler can be constructed to avoid all of these events. UNIX system overhead (process sleeps,
process wakeups, and process terminations) can be eliminated from a chosen set of processes by
constructing an application that separates the use of system functionality from user computation by using
cooperating processes that share memory. Interprocess communication can be accomplished with
memory interlocks in shared memory. The system's physical memory is the only limitation on the
amount of shared memory.

In a multiple processor system, the class scheduler allows an application to use dedicated resources and
at the same time schedules the non-dedicated resources. Since the scheduler runs only as needed, the
dedicated resources spend no time in system state. The latencies associated with scheduling high priority
processes (context switches as well as interrupts) are eliminated. Interrupts on dedicated resources can
be eliminated by configuring the system peripherals onto the non-dedicated resources. The system clock,
which drives time slicing, interrupts on a non-dedicated processor only.

The end result is that real-time processes, which must respond within rigorous timing constraints, are
never blocked, preempted, nor interrupted.

Acknowledgements

I would like to thank Tom Jaskiewicz for the invaluable brainstorming sessions during the early phases of
this project. I also want to thank Barry Rogoff for assistance in technical editing and typesetting.

-192-

High Performance Enhancements or 0-1 Unix

Rob Kolstad
Convex Computer Corporation

Didntt make deadline. Copies available at the Conference.

Considerations for Massively Parallel UNIX Systems
on the NYU Ultracomputer and IBM RP31

Jan Edler, Allan Gottlieb, Jim Lipkis2

Ultracomputer Research Laboratory
Courant Institute of Mathematical Sciences

New York University
251 Mercer Street

New York, NY 10012

November, 1985

ABSTRACT

Novel challenges must be met when designing UNIX implementations for highly parallel shared-memory
MIMD architectures. Of primary importance is the need to avoid serial bottlenecks whenever
possible, so that the potential speedup of such machines can be realized. Critical code sections far too
short or infrequent to seriously impact performance on today's machines will be of concern on very
large machines because the cost of each serial section rises linearly with the number of processors
involved. In addition, the kernel interface must provide for a structured and natural style of general
purpose parallel programming. We present the approaches taken to satisfy these requirements for
machines such as the NYU Ultracomputer and the IBM RP3. We also describe our preliminary
parallel implementation of UNIX, which is currently running on an eight-processor prototype
Ultracomputer.

1. Introduction
Continuing advances in microelectronics have inspired many to consider assembling large

numbers of powerful processors into a single general-purpose mach.ine capable of solving very large
problems. Two such projects currently underway are the NYU Ultracomputer (Gottlieb et at. [83b])
and the IBM RP3 (Pfister et at. [85], Pfister and Norton [85], Norton and Pfister [85], Brantley et al.
[85]), the former a shared-memory design and the latter supporting both shared and private memory.
At NYU we have been investigating the adaptation of the UNIX operating system to these
architectures.

However, it remains to be demonstrated that such machines can be effectively utilized, and that
UNIX is well-suited to the needs of such an environment. There are two aspects to this challenge.
First, several thousand processors must be coordinated in such a way that their aggregate power is
applied to useful computation. Serial code sections in which one processor works while the others
wait become bottlenecks that drastically reduce the power obtained, even if the serial section is so
small or infrequently executed as to be entirely acceptable on a machine with only modest
parallelism. Indeed, the relative cost of a serial bottleneck rises linearly with the number of
processors involved. Second, the machine must be programmable by humans. Effective use of high
degrees of parallelism will be facilitated by simple languages and facilities for designing, writing, and
debugging parallel programs.

The present report concentrates on operating system considerations for shared memory parallel
processors. The software ramifications of the RP3 private memory are only briefly discussed; a

lUNIX is a trademark of AT&T Bell Laboratories.

2This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U. S. Department of Energy, under contract number DE·AC0276ER03077, and in part by the National Science
Foundation, under grant number DCR·8413359.

-194-

more detailed presentation will appear in a future paper. We begin with an overview of the
computational model and architecture of the NYU Ultracomputer. Next, we consider issues in
parallel programming that impact the operating system, in particular the system services required by
parallel code, and process and job scheduling issues. The following section describes in somewhat
more complete fashion the programming interface presented by the kernel for parallel programs.
Finally, we discuss some design issues of the ultraparallel operating system kernel itself, including
data structures, resource management, and synchronization mechanisms. These mechanisms have
been employed in the implementation of a parallel UNIX system running on an eight-processor
prototype Ultracomputer.

2. Machine Architecture
In this section we review the architectural model on which the Ultracomputer is based, and

illustrate the power of this model. Although this idealized machine is not physically realizable, a
close approximation can be built. Elements of the actual machine design are briefly described in
order to illustrate integrated hardware/software mechanisms for bottleneck-free coordination of a
very large number of processors. The reader is referred to Gottlieb et ale [83b], Edler et ale [85],
and the references therein for further details.

2.1. Paracomputers
An idealized parallel processor, dubbed a "paracomputer" by Schwartz [80] and classified as a

WRAM by Borodin and Hopcroft [82], consists of a number of autonomous processing elements
(PEs) sharing a central memory that they are permitted to read or write in a single cycle. In
particular, simultaneous reads and writes directed at the same memory cell are effected in one cycle.

We augment the paracomputer model with the "fetch-and-add" (F&A) operation, a powerful
interprocessor coordination primitive that permits highly concurrent execution of operating system
algorithms and application programs (see Gottlieb and Kruskal [81]). Fetch-and-add is essentially an
indivisible add to memory; its format is F&A(V,e), where V is an integer variable and e is an integer
expression. The operation returns the (old) value of V and replaces V by the sum V +e. Moreover,
concurrent fetch-and-adds are required to have the same effect as if executed in some (unspecified)
serial order. The following example illustrates the semantics of fetch-and-add: Consider several PEs
concurrently executing F&A(I,l), where I is a shared variable used to index into a shared array.
Each PE obtains an index to a distinct array element (although one cannot predict which element will
be assigned to which PE), and I receives the appropriate total increment.

Fetch-and-add is a special case of the more general fetch-and-<J> operation (where <J> may be an
arbitrary binary associative operator) introduced by Gottlieb and Kruskal. The classic test-and-set
and compare-and-swap synchronization operations are both special cases of fetch-and-<J> as well, and
the familiar load and store operations are degenerate cases.

2.2. The Power of Fetch-and-Add
Using the fetch-and-add operation we can perform many important algorithms in a completely

parallel manner, Le. without using any critical sections. For example, as indicated above, concurrent
executions of F&A(I,l) yield consecutive values that may be used to index an array. If this array is
interpreted as a (sequentially stored) queue, the values returned may be used to perform concurrent
inserts; analogously F&A(D,1) may be used for concurrent deletes. The complete queue algorithms
contain checks for overflow and underflow, collisions between insert and delete pointers, etc. (see
Gottlieb et ale [83a]). Forthcoming sections will indicate how such techniques can be used to
implement a totally decentralized operating system scheduler. We are unaware of any other
completely parallel solution to this problem and note that given a queue that is neither empty nor
full, the concurrent execution of thousands of inserts and thousands of deletes can all be
accomplished in the time required for just one such operation.

-195-

As another example, consider the classical readers-writers problem in which two classes of
processes are to share access to a central data structure. One class, the readers, are permitted to
execute concurrently, whereas the writers require exclusive access. Although there are many
solutions to this problem, only the fetch-and-add based solution given by Gottlieb et al. [83a] has the
crucial property that during periods of no writer activity, no critical sections are executed3

•

2.3. Hardware Realization
The paracomputer is not physically realizable, due to fan-in (and other) limitations.

Furthermore, if concurrent fetch-and-add or load operations were to be serialized at the memory of a
real parallel computer, then we would lose the advantage of parallel coordination algorithms, having
merely moved the critical sections from the software to the hardware.

In fact, a parallel processor closely approximating our idealized paracomputer can be built as
described in Gottlieb et al. [83b]. The resulting NYU Ultracomputer uses a message switching
network with the topology of Lawrie's [75] a-network (equivalently, the SW Banyan of Goke and
Lipovsky [73]) to connect N = 2° autonomous PEs to a central shared memory composed of N
memory modules (MMs). Thus, the paracomputer's single cycle access to shared memory is
approximated by a multicycle connection network.

When concurrent loads, stores, and fetch-and-adds are directed at the same memory location
and meet at a switch, they can be combined without introducing any delay (see Klappholz [80], and
Gottlieb et al. [83a]). Since combined requests can themselves be combined, any number of
concurrent memory references to the same location can be satisfied in the time required for one
central memory access. It is this property that permits the bottleneck-free implementation of many
coordination protocols.

The impact of network latency on performance is reduced by associating a local cache memory
with each PE. Frequently-used program code and data can be accessed in (approximately) a single
processor cycle when resident in the cache. Thus the network latency is eliminated from many
memory accesses, and all accesses benefit from the reduced network traffic.

Unfortunately, cacheing of read-write shared variables presents a coherence problem among the
various caches. Different caches will in general come to contain different values for the same
variable, and updates of the corresponding memory cell will occur out of sequence. Means are
needed to ensure synchronized, coherent access among the multiple PEs for variables used for
coordination or data transmission. An obvious mechanism, which is employed in the prototype
Ultracomputer, is merely to prevent cacheing of read-write shared variables4 • User level software is
responsible for arranging the correct "cacheability" status of each memory access.

Because the cache hit ratio is a major factor in machine performance, maximizing cacheability is
an important function of the compiler and operating system software. This suggests supporting a
more elaborate scheme in which shared variables that are accessed read-only, or accessed only
privately during a particular code segment, may be cacheable during execution of that segment (see
McAuliffe [86]).

3. Parallel Programming

3Most other solutions require readers to execute small critical sections to check if a writer is active and indivisibly
announce their own presence. The OIeventcount" mechanism of Reed and Kanodia [79], although completely parallel
detects rather than prevents the simultaneous activity of readers and writers.

4Because of the stochastic nature of memory access through the O-network, this may not be sufficient to insure that
the synchronization is maintained. If the processor or cache is capable of issuing memory requests and proceeding
without waiting for acknowledgment from the network, then for code sensitive to synchronization a further mechanism (a
"FENCE" operation) is needed to guarantee that updates are sequenced correctly (Collier [81]).

-196-

3.1. Levels of Parallel Control
We consider applications programming of Ultracomputer-like parallel computers primarily from

the standpoint of operating system design. That is, we study the requirements placed on the
operating system by the desire to support effectively the number of different styles of programming
permitted by the shared-memory MIMD model. While we see great potential in automatic
parallelization of sequential programs, we assume here for purpose of discourse only that programs
are designed originally for a shared-memory MIMD computers.

Much work on concurrent programming has focused on a high-level, block-structured paradigm
of parallel process control. Under this model parallel code is structured in closed-form constructs
with implicit synchronization at the end of each parallel block; explicit synchronization and
"fork/join" operations (Conway [63], Dennis and Van Horn [66]) are discouraged or disallowed.
The argument is that the resulting parallel code is simpler, clearer, and easier to debug than code
with unrestrained and unstructured process creation/destruction and synchronization. Furthermore,
this programming style obviates in many cases the need for explicit shared/private declarations. That
distinction is instead implicit in the usual static scope rules. Thus, for example, a variable that is
visible within a block defining an "iteration" of a parallel loop, but declared in a larger enclosing
scope, is taken to be shared during execution of the parallel loop; a variable declared within the
block itself has scope of an individual iteration and hence is private. Finally, automatic optimization
of parallel code is facilitated when the parallel structure of a program can be readily detected by the
compiler. It should be possible, for example, for an optimizing compiler to implement a fine
granularity of control over the cacheability of data areas, with greater reliability (and thus avoidance
of cache coherence errors) than could be specified by the programmer.

However, the utility and effectiveness of this high-level parallel programming style is not yet
demonstrated. Furthermore, the volatile parallelism facilitated by these closed-form parallel
constructs will not be needed in all programs. When parallel processes need to synchronize very
frequently, the overhead involved in the process creation and termination operations invoked by
these constructs will become significant. This overhead can be alleviated to some extent by pre
spawning processes as described below. However, many parallel applications will be more suited to
a lower-level programming style. One such approach involves the initial creation of a fixed number
of long-lived processes, usually smaller than the number of PEs. Synchronization, scheduling, and
memory management become entirely the responsibility of the application programmer. Here the
syntactic structure of the program provides no information regarding the dynamic parallelism or the
sharing of data.

As we will see in a subsequent section, an attractive synthesis of the two styles may be
obtainable. We consider implementing these scheduling and management functions in usermode
code which is part of the runtime environment provided by a language compiler. In the ideal case
this would afford the advantages of high-level structured parallel programs, while the creation,
destruction, synchronization, and management of parallel threads of control are accomplished
without operating system overhead. Ramifications of these programming models are discussed
below.

3.2. Parallel Constructs
Note that programming in the MIMD parallel environment need not be radically different from

conventional sequential programming. We consider parallel languages which are variants of
conventional procedural languages, augmented only with a shared/private attribute for declared
variables and a small number of explicit parallel control constructs: The parallel loop, in which the
iterates are executed in parallel instead of serially, is an obvious parallel extension of the loop
construct found in every procedural language (see Gosden [66], Droughon et a1. [67], Lundstrom and

'In particular, the automatic techniques of Kuck (see Kuck and Padua [79]) and Kennedy (see Kennedy[80], Allen
and Kennedy [84]) will be important for running both existing and new applications.

-197-

Barnes [80], and Davies [81]). The parallel compound statement, or parallel block, contains
inhomogeneous statements that are to be executed in parallel. It is also a popular structure and has
appeared many times (e.g, Dijkstra [68], Brinch-Hansen [73], and the collateral expression of
ALGOL 68). Neither construct contains explicit reference to processors. The PEs themselves are a
resource that is only indirectly available to the program. These (and other) parallel constructs
generate processes which run on PEs. Potentially, all of the processes generated by a parallel
construct could execute simultaneously. Whether or not this actually occurs depends on the
scheduling policy, system load, and other factors.

3.2.1. Barrier Synchronization While it is important to minimize the idle processor time
caused by synchronization among parallel processes, such synchronization is occasionally necessary.
A common form of synchronization occurs when each of the processes executing a parallel code
section must wait at a "barrier", or synchronization point, until they have all reached that point.
Algorithms for barrier synchronization have been given by Rudolph [82] and Kruska~ [81]. Other
important types of synchronization are discussed subsequently in the context of the parallel kernel
design, Section 6.3.

3.3. Implementation of Parallel Constructs
Having discussed the benefits of a "high-level" programming style, we now consider in detail

whether that style can be supported effectively. In particular, potential parallelism must not be
sacrificed due to the parallel language implementation. We shall see that the granularity of
parallelizable processes is a crucial barometer of the effectiveness of the implementation.

The basic mechanism provided for creating parallelism is the spawn operation, which is used to
support the parallel loop and parallel block constructs. Spawn is fundamentally an n-way fork of
control, in which n identical subprocesses are created. The subprocesses are made available for
scheduling on any available PEs, in a manner to be discussed. We assume here that the "parent"
process waits for the termination of its spawned "children", which occurs automatically at the end of
the parallel code block. Hence the parent process- and thus the subsequent program statements- are
synchronized with the completion of the spawned parallel processes.

The translation into runtime code of a parallel loop, with n homogeneous iterates, might make
use of the following operating system primitives. First, a spawn(n) is executed by the original
(parent) process. It stores the value n in a shared children variable, adds n items to the system work
queue, and executes a form of wait so as to block until resumed subsequently by a terminating child
process. The terminate function is executed by the spawned child processes at the end of the loop
body. Terminate executes F&A(children, -1); if this drives children to zero then the current process
is the last terminating child and thus resumes the parent process.

An obvious implementation for the central work pool is the fetch-and-add based parallel-access
queue that was mentioned earlier.

3.4. Performance Issues in Parallel Control
There are two significant performance criteria by which any implementation of these operating

system primitives must be evaluated. First, we wish to avoid algorithms that require time linear (or
worse) in the number of spawned processes. Hence it is unacceptable to implement a spawn of n
processes by a sequence of n insert operations on a system process queue. Instead, a spawn
operation inserts a single item with multiplicity n on the process queue, and the PEs deleting such an
item complete the creation of the children in parallel. Together with fully parallel memory allocation
routines, this will largely prevent the occurrence of diminishing marginal benefits as the degree of
parallelism is increased.

However the overhead (in absolute terms) of these operations is also crucial, because it
determines the minimum granularity of parallel operations that can be efficiently spawned. Thus,
although the basic unit of parallelism provided by the language constructs is the program statement,

-198 -

it is clear that spawning processes that each execute a trivial statement (e.g., one assignment or
arithmetic operation) would be inefficient. While careful design of portions of the operating system
can reduce this overhead, the facilities described to this point must be considered useful only for
relatively large-granularity parallel operations. This limitation can be alleviated in several ways.

Parallel loop iterates of smaller granularity can often be supported with a policy known as
chunking. When the number of parallel iterates (n) is much larger than the number of available PEs
(N), or the number of instructions in the body of the loop is small compared to the overhead of
process creation, then the loop can be transformed into a serial loop consisting of k iterations nested
inside a pa~allel loop of nlk iterations. Thus the scheduling overhead per iterate is reduced by a
factor of k invisibly to the programmer, and, if k < nlN, the effective parallelism is not diminished.
The value of k is most appropriately determined at runtime as a function of the number of PEs
available and possibly of system load. Care must be taken to avoid setting k too high and nullifying
the load-balancing properties of the "self-service" paradigm discussed below. Kruskal and Weiss
[84] have examined the performance of such chunking policies and argue that even very naive
schemes can perform acceptably well.

Effective granularity of programmed parallel functions can be further reduced by pre-spawning
processes. Here the programmer or compiler spawns and suspends a sufficient number of processes
in advance of any parallel constructs. The parallel loop or block code then activates these processes
by sending a message or a signal, thus "creating" parallel threads of control without the overhead of
process creation. In effect we are supporting the parallel constructs with operating system functions
moved into usermode code.

Finally, one can pre-spawn non-preemptable processes that busy-wait until needed by parallel
constructs. Far finer granularities of parallel functions can thus be programmed with high-level
constructs, since virtually all of the overhead of process creation, scheduling, and context switching is
eliminated. The cost is in tying up a larger number of PEs than may actually be used during much of
the program execution, particularly if the degree of parallelism is highly volatile.

3.5. Performance Issues in Barrier Synchronization
Synchronization operations may be implemented in two ways: It is always correct for the

processor to suspend the current process while waiting for the synchronization to complete, and
switch to another process. However, considerable operating system overhead is incurred. The
alternative is a busy-waiting synchronization routine that simply loops and tests whether the
synchronization condition is satisfied. For short waits, the overhead involved is significantly less for
busy-waiting than for process switching. However, busy-waiting admits the possibility of deadlock
when the number of synchronizing processes is greater than the number of available processors (and
no preemption is permitted). Even when deadlock cannot occur it is possible that a number of
processors will loop unproductively for extended periods of time, particularly if one or more of the
synchronizing processes is preempted or swapped out.

A hybrid implementation, in which each process busy-waits for a short period and then, if the
condition is still not satisfied, yields the PE, would avoid rescheduling overhead in those cases where
busy-waiting is suitable, and deadlock would be prevented. Synchronization issues have implications
for process and job scheduling that are addressed below.

4. Process scheduling

4.1. The "Self-Service" Paradigm
Operating systems for uniprocessors and some multiprocessors usually contain a single module

that schedules use of the processor(s) by assigning processes as appropriate. While this centralized
approach assures favorable load balancing, it introduces a serial bottleneck that will limit overall
performance on highly parallel machines. Alleviating this bottleneck by designating two or more
schedulers, each managing a portion of the processors, leads to an interesting tradeoff: if the number

-199-

of schedulers is small, scheduling bottlenecks arise; if the number is large, effective load balancing
suffers.

Another technique used to avoid the bottleneck is stochastic distributed scheduling. Here a
work queue is maintained for each PEa Whenever a process is created on any PE, that PE assigns
the process on a random basis to one of the work queues. In concert with time-slicing, or when
certain constraints (on the variance of process execution times) hold, this mechanism can effectively
balance the load, possibly at a cost in scheduling overhead (see Klappholz [82]). It does not permit
the constant-time spawning of multiple processes discussed earlier since the assignment of each
process must be randomized individually.

The scheduling paradigm adopted for process scheduling (and other resource management
functions) in the Ultracomputer is that of a self-service system, in which one maintains a single
central queue of ready processes. Each processor accesses this shared queue to obtain processes for
execution and to insert newly-spawned processes. This self-service paradigm relies on simultaneous
distributed processing of centralized data, and is highly dependent on concurrently-accessible data
structures that allow concurrent operations to be performed without serialization. The fetch-and-add
based mechanisms described earlier are crucial in implementing these critical-section-free operations,
e.g., queue insertion and deletion.

The queue algorithms used are enhanced variants of the algorithms mentioned earlier that
support three important additional features:

(1) Multiplicity. A spawn of k processes is implemented by the insertion of an item of multiplicity
k, which is "deleted" k times before actually being removed from the queue.

(2) Priorities. Processes may be inserted onto the central ready queue at anyone of a (fixed)
number of priorities, with the delete operation removing the highest priority item 6•

(3) Interior removal. In order to swap out a process from memory, or to prematurely terminate a
process, it is occasionally necessary to Hdelete" an item from the middle of a queue (see Wilson
[86]).

Distributed scheduling from a central ready queue achieves optimal load balancing among the
PEs and also facilitates multiprogramming. Unrelated jobs may contribute processes to the ready
queue; all will be scheduled as PEs become available. In addition to its usual benefits,
multiprogramming can improve throughput by allowing serial sections and highly parallel sections of
different jobs to be overlapped.

4.2. Job Scheduling
As indicated above, when the number of ready processes exceeds the number of processors, the

operating system uses a priority based preemptive scheduling algorithm. Although we expect this
standard multiprogramming discipline to prove adequate for program development as well as for
production runs of many programs, we anticipate that some sophisticated users solving large
problems will require finer control over scheduling. Such users are well served by the non
preemptable allocation of a number of processors, which are then assigned to subtasks under
program control. In addition to permitting a problem-specific dynamic choice of which subtask to
execute next (rather than relying on the operating system's unsophisticated notion of priority), non
preemptable processes are immune from the overhead associated with involuntary context switching.

6In addition to other more obvious functions, process priorities are needed in management of nested spawns. The
dynamic process structure of a program in which spawns are nested several levels deep may be depicted as a tree, in
which spawned child processes are represented by nodes that are descendants of their parent process node. If the
program is executed such that the process tree is traversed breadth-first, then there is a danger that because the processes
at each level are spawning more processes before any process may terminate, the capacity of memory or system tables
may be overwhelmed by an exponential explosion in instantiated processes. This is avoided by ensuring depth-first
traversal of the process tree, which may be achieved by enqueuing the template for creation of spawned children on the
ready queue at a priority greater than that of the parent.

-200-

The operating system supports non-preemptable processes with a variant of the spawn primitive,
which inserts a non-preemptable item with multiplicity n onto a high priority ready queue, causing
the next n available PEs to select these processes for execution. Since the operating system will not
permit the total number of such processes in the system to exceed the number of PEs, the time delay
between the invocation of the first and last instance of the process in question is bounded by the
preemption interval.

To illustrate one use of this facility consider an application that requires tight synchronization
between processes, Le., one in which processes must synchronize after executing only a small
number of instructions. Although the stochastic nature of the network prevents an exact
determination of the rate of progress for an individual process, with preemption removed (and with
the Ultracomputer combining network), a group of processes will execute at roughly equal rates with
high probability. Thus, providing that the program segments executed by each process between
corresponding synchronization points are of comparable length, a programmer using the non
preemptable spawn can profitably synchronize the resulting processes by means of busy waiting loops
free of system calls.

In summary, we have considered a spectrum of "organizational styles" of parallel programs.

(1) On one end of the scale are jobs that are static in their use of PEs and are subject to real-time
constraints. Processes associated with such jobs should not be preempted under any
circumstances.

(2) More important is a class of non-real-time applications referred to above, which coordinate
parallel activities on a fixed group of PEs and are characterized by very frequent internal
synchronization. As described above, busy-waiting synchronization is appropriate for such
jobs. They may be preempted or even swapped out, as long as all of the processes are
preempted together.

(3) Jobs displaying dynamic parallelism are better suited to our original model of process
scheduling. Although internal synchronization will still be needed occasionally, it can be
adequately managed with the hybrid synchronization mechanism proposed above, even in the
presence of chunking. Nonetheless there are reasons to keep related (Usibling") processes
executing concurrently: First, there are algorithms whose performance is improved when
parallel processes execute at more or less the same rate, that is, when the execution rate of the
slowest-progressing process in the spawned set is maximized. Second, the effectiveness of the
processor cache will be improved when successive processes executed on the same PE come
from the same job, since they are then likely to reuse cache entries for program code7 •

The structure of the central ready queue is further complicated by this need to recognize groups
of sibling processes in swapping and scheduling. However, the original fetch-and-add based notion
of bottleneck-free inserts and deletes can be maintained.

5. Kernel Interface
The set of operating system services needed by parallel programs is to a large degree identical

to that provided in conventional serial operating systems. We enhance the UNIX kernel interface with
a small number of primitives for creation and synchronization of parallel threads of control, and for
management of shared and private memory areas. The desire for high performance also has
ramifications for other system functions, such as 110 and file system organization, that are not
specifically related to MIMD or shared memory systems. Because we are only beginning to
investigate these last areas, no further comments about them will be made in this paper.

There are many different ways of structuring parallel programs, and hence the most important
goal of the system interface design is generality. Both process management and memory
management offer choices for programming language and application designers that involve complex

7Here we assume that the cache architecture permits retaining of cache lines across a context switch.

-201-

tradeoffs between ease of program design and debugging, and possible efficiencies to be obtained
through low-level coding or lower levels of protection; between efficient accommodation of volatile
levels of parallelism and efficient processing of 110 or tight internal synchronization; between
turnaround time for a particular job and overall throughput for a set of jobs with varying resource
requirements; and so forth. As always in operating system design, the kernel must implement a
small set of primitives that provide for the widest possible range of user applications.

Almost all of the facilities described in this section are implemented in a prototype UNIX-based
operating system at NYU, which is described later in this paper. However, the kernel interface is
very much a work in progress. Far more experience is needed in designing languages and programs
for shared-memory multiprocessors before we will fully understand the requirements for the
programming model in service of parallel programs.

5.1. Process Management
At the most basic level, each thread of control in a parallel program is embodied in a standard

UNIX process. We use the term job to refer to the collection of processes executing a single parallel
program, normally a subtree rooted at a process created by fork. Certain operating system functions
such as scheduling, shared memory management, and signaling may recognize jobs as well as
individual processes.

5.1.1. System Calls The spawn system call has already been introduced. It is a multi-way fork
that creates n processes in time essentially independent of n (unlike an iterated fork, which would
require time proportional to n). Spawned processes are full-blown UNIX processes, and they inherit
attributes from the parent much like forked processes, with only minor exceptions8• The set of child
processes created by a single spawn is referred to as a spawn group.

Arguments to spawn include the multiplicity (n), option flags, and, optionally, the location of
an array used for reporting of child processes' exceptional termination conditions. Option flags
include (1) request for nonpreemptable child processes, essentially a request for n PEs, and (2)
request for cactus stack processing (to be discussed in Section 5.2.4). The parent process may obtain
exit codes from individual subprocesses, or summary counts representing a histogram of the various
termination conditions.

The spawn call normally returns inline in all processes, much like fork, returning the child's
"spawn index" (a number uniquely chosen from {l, .. ,n}) in each child process and zero in the parent
process. Child processes then execute independently until terminating with exit.

Mwait ("multiple wait") is a new system call used by a parent process to await the termination
of all spawned children. Again, neither mwait nor exit involve serial operation, as would be the case
using the standard wait system call, which would have to be iterated. Mwait will also return in the
event of an abnormal child termination, with the error status suitably reported. Furthermore, mwait
can be used to test (without blocking) whether outstanding children remain.

A new signal, SIGPARENT, is automatically sent to all processes spawned by a terminating
parent. Unlike the traditional situation with forked processes, there is usually no purpose in allowing
continued execution of a spawned orphan process. Experience at NYU has demonstrated the need to
assist the programmer in cleaning up orphans after an abnormal termination, especially during
debugging of parallel programs.

5.1.2. Low-Overhead Parallel Threads UNIX processes are relatively "heavy" objects.
Associated with each is a unique memory management context containing private and shared memory
areas, a number of open files, and a substantial number of attributes (userids, current working
directory, signal actions, etc.). Process creation requires duplicating much of this state and even

'Spawned processes must however be distinguished from forked processes, for technical reasons that will become
apparent.

-202-

context switching can involve considerable overhead, depending on the memory management
architecture and other factors. In earlier sections we proposed to reduce the impact of process
creation and destruction by pre-spawning processes, and to eliminate the context switching overhead
as well by permitting non-preemptable processes. In this last case the program in effect obtains and
then schedules a fixed number of PEs; if multiprogramming throughput is not an issue then one
might assign all or almost all of the existing PEs to an individual application in this manner.

A natural organization for managing the "assigned" PEs involves user-level threads of control
which are scheduled by user code into execution under the UNIX processes which are fixed on the
individual PEs. These threads are known herein as tasks to distinguish them from UNIX processes.
The operating system has no cognizance of these tasks; their creation, destruction, synchronization,
and resource assignments are accomplished by a layer of software that is part of the user program, a
standard library, or the language runtime environment. The "weight" of UNIX processes is no longer
a concern, since the processes, once spawned, are entirely static. However, such jobs will be unable
to respond efficiently to highly varying demands for service by the usermode tasks; if the user wishes
to dynamically expand or reduce the pool of available PEs then process creation or context switching
overhead arises.

There are further difficulties with this scheme of "user multitasking" in the UNIX process
environment. If a task modifies any aspect of the process state, by (for example) opening a file or
changing the current working directory, and that task is later executed under a different UNIX
process, its environment will invisibly change. File access will fail or affect an incorrect file, the
current working directory will be wrong, etc. These problems appear to be solvable within the
current framework, although the details are still under investigation. For example, the kernel
interface might be extended to allow access to files opened in other processes within the same job,
and in general, system calls (e.g. chdir) can be intercepted by a layer of software that insures regular
system call semantics are maintained for each task.

From the point of view of the operating system kernel, we have considered all processes to be
homogeneous (the job and spawn group defined above are merely aggregates and have no associated
attributes or capabilities). In other work in parallel programming environments the concept of
lightweight tasks implemented in the kernel has proved popular (e.g., Baron et al. [85]). Such tasks
are scheduled by the operating system but contain almost no private state; rather, they exist within
the resource domain of a process or job. Some of the above difficulties would be alleviated if such
objects as opened files were maintained on a job level rather than a process level. Other aspects of
the process state semantics would change; e.g. the current working directory could no longer be
manipulated by an individual program thread. The overall utility of lightweight tasks is not yet
known. It is not clear whether they will enable scheduling of volatile parallel threads with minimal
context switch overhead. Further investigation is required in this area.

Memory management issues pertaining to this discussion are considered in the next section.

5.2. User Memory Structure
The operating system must provide one or more segments within a job which permit data to be

shared among processes. Here we consider shared memory for storage of data within a parallel
program rather than for general inter-process communication. Hence there is no need for memory
segments shared among arbitrary unrelated processes, and there may be no need for dynamic
creation of shared memory segments other than in the course of program or process initiation. Since
arbitrary subsets of the processes constituting a job may wish to share memory, full generality
together with full protection would require a large number of shared segments. In a pure global
shared memory environment, a simpler, more structured approach appears adequate and natural.
Each shared data area is accessible over a subtree of processes; it is created on behalf of the parent
process and inherited by all spawned descendants. Thus the number of shared segments visible to an
executing process is bounded by the spawn nesting level. When sharable local memory is present,
further mechanisms for management of shared segments will be required.

-203-

The process image strongly resembles that of traditional UNIX processes. Logical memory
segments for shared program text, private data, and program stack remain, though in some cases
transformed. We augment these with an intra-job shared data segment.

5.2.1. Object Files Traditionally the text and data segments are initialized by the exec system
call from the text, data, and bss (uninitialized data) segments of an object (a.out) file. In the parallel
environment more object file segments are required. The shared data segment is created from
shared data and shared bss segments in the a.out file. Furthermore, in architectures supporting local
PE memory, we may need the capability to specify at compile time program components to be loaded
into the local memory. This gives rise to an additional three object file segments for local text, local
data, and local bss.

In our prototype operating system we have adopted the Common Object File Format (COFF)
from AT&T System V UNIX, although in most other respects our system is based on Version 7 (and
in the future 4.3 BSD) UNIX. COFF provides for varying numbers and types of segments in the a.out
file, and permits the needed flexibility.

5.2.2. Shared Data The shared data segment is created at program initiation (by exec),
although it may be of zero length. It is inherited by all descendant processes. The segment may be
expanded at any time through the new shbrk system call, which is usually used via a library parallel
memory allocator known as shmalloc. The sharing of this data segment is managed much like the
traditional UNIX shared text segment, except that it is read-write and exists only within a job.

5.2.3. Cacheability Control Because the shared data segment includes read-write variables,
accesses are in general not cacheable. However, there are various circumstances in which certain
variables are used, either temporarily or permanently, in a private (accessed by only one process) or
read-only manner. A process may dynamically specify the cacheability of such variables. Means will
be also be provided for flushing and invalidating the cache as necessary.

5.2.4. Private Data A private data segment is created for each spawned or forked process. Its
size is controlled with the standard brklsbrk system call. As in standard UNIX, private data segments
are isolated by memory mapping hardware so that even in case of user program error there is no
possibility of a private data segment owned by one process being modified by another process.
Accesses to the private data segment are always cacheable.

In standard fork semantics, data in the private data segment is copied into the new private
segment created for a new process. When applied to spawned processes, this policy dictates the
following programming language semantics: Private variables replicated for a child process (e.g. an
iterate of a parallel loop) are initialized to the current value of the corresponding variable in the
parent's private space. It is entirely possible that a programming language will require different
behavior, e.g., reinitialization according to an initializer or default value instead of a value
propagated from the parent. The spawn system call may thus provide an option requesting
reinitialization instead of copying of the private segment.

We now consider the impact of user multitasking on the private data segment. An immediate
obstacle arises. If the private variables of usermode tasks are allocated in the private data segment,
then each time a task moves from one process to another its private variables will have to be copied,
or at least remapped, from one private data segment to another. In either case, sufficient overhead
is introduced into the usermode context switch to abrogate much of the advantage of this type of
program organization. A solution is to place the task private variables in cacheable areas of th~

shared data segment, so that they are accessible from any process, and rely on the compiler and user
code to (1) isolate these private subareas from improper access, and (2) issue the appropriate cache
flush or invalidate during the user level task switch. Through avoiding use of the private data
segment, most of the task switch overhead has been eliminated. Experience will be needed to
determine the dangers of private data areas that are not protected or isolated by the mapping

-204-

hardware. Depending on the programming language and compiler, it is possible that debugging of
parallel programs will be more difficult than otherwise. Similar issues regarding the private data
segment arise in other situations that involve pre-spawning.

5.2.5. Program Stack The stack segment involves some of the same issues as the private data
segment. In standard UNIX, the stack is merely a second private data segment, distinguished by the
fact that it expands and shrinks automatically. The simplest policy in the parallel environment is to
replicate the entire stack segment on spawn as is done for fork. The stack is thus entirely private and
cacheable.

However, only the stack frames created since the last spawn need to be private. Furthermore,
sharing the remainder of the stack will permit realization of the scope-based paradigm for variable
sharability in structured parallel code, which was discussed briefly in Section 3.1. When parallel
constructs are nested, in a block-structured language, the automatic variables declared at each level
are allocated in successive stack frames. A natural implementation of the scope rules is to arrange
that a parent's stack frame be shared by its child processes, and, in fact, by all those processes
constituting the subtree rooted at this parent process. The resulting structure is known as a saguaro
or cactus stack (Hauck and Dent [68]). Private stack frames for active processes are linked to the
parent's stack frame. There is no serial overhead in creating or destroying these private frames since
concurrent memory requests can be processed in parallel. An option flag in the spawn system call is
used to cause cactus stack (sharing of existing stack) rather than private stack (copying of entire
stack) processing9•

When user multitasking or other forms of pre-spawning are involved, the stack segment
presents the same problems as the private data segment. The solution, analogously, is to allocate
space for all required program stacks in the shared data segment. Usermode code then manipulates
the stack pointer register in the course of scheduling tasks, implementing logically private stacks
inside the physically shared area. Using cacheable and noncacheable areas as appropriate, a cactus
stack can be implemented in this manner. We may now conclude that the only user memory segment
needed for such programs is the shared data segment. Private data and stack segments need not even
be created. Again, there are potential dangers resulting from the lack of inter-task storage
protection.

5.2.6. Local Memory In architectures that support local PE memory as well as global
memory, one needs extra logical segments to provide local versions of the text, data, and stack. The
IBM RP3 further allows access by each PE to the local memory of every other PEe This is used for
message passing and restricted cases of data sharing.

The required kernel interface facilities for support of local memory features are not yet well
understood. Explicit allocation of private local memory segments may be provided. Furthermore,
the program text and possibly the stack may be "cached" in local memory invisibly to the user.
When a local memory is insufficient to service all allocation requests, it may be possible to use the
global memory as a backing store, managed with virtual memory techniques. Several additional
approaches for utilizing local memory are also under investigation.

5.3. Usermode Synchronization
Both busy-waiting and process-switching synchronization occur among parallel processes or

tasks within a user program. Kernel primitives are provided in support of both forms.

9A new activation record must be created for each child, so spawn must be given the address of a subroutine or code
block to be executed by the children. In this case, spawn only returns in the parent (after termination of the children).

-205-

5.3.1. Busy-waiting synchronization The operating system is for the most part not involved
in busy-waiting synchronization code in user programs. No facilities beyond access to shared
variables (and perhaps fetch-and-add) would appear to be required to implement such routines.
However, two difficulties arise.

(1) In programs with signal-handling routines, it may occur that a process holding a lock is
interrupted by a signal whose handler requires the same lock. Since the signal handler operates
within the same process, deadlock will result.

(2) When busy-waiting locks are used by a collection of preemptable processes, it is possible that
the process holding a lock will be preempted and perhaps swapped out while the rest of the
processes, still in memory and active, loop unproductively for a substantial period of time.

A new kernel interface feature is used to avoid these problems. The user program can request
temporary suspension of signal delivery and/or preemption during busy-wait critical sections. The
latter is only a hint, which the kernel may ignore, since it does not affect correctness. It is
unreasonable to implement these functions with system calls, which would increase manyfold the
expense of a busy-wait synchronization. Instead, the user program sets these temporary modes
through specially-designated communication flag variables that are allocated in user memory. The
kernel is informed of the location of these flag words with a system call (so as to avoid "magic
addresses" encoded into the kernel), and checks the flags at appropriate times. Thus negligible
overhead is added to the user's synchronization routines.

5.3.2. Process-switching synchronization Two new system calls, block and unblock, are
added for reliable suspension and reactivation of processes in process-switching usermode
synchronization routines. The kernel does not provide semaphores or other coordination facilities
directly, but merely manages process status.

The kernel maintains a per-process pending unblock flag, which is used to avoid races and
deadlock in the user program. The block system call atomically tests the pending unblock flag, and, if
set, clears the flag and returns immediately; otherwise, it suspends the process by entering a blocked
state that is distinguished from that set by pause or sigpause. The user may prevent signals from
prematurely awakening the process, as in sigpause. The unblock system call atomically tests whether
the process is suspended by a block, and, if so, makes it ready; otherwise, it sets the pending unblock
flag for the process. The block and unblock primitives are used in the obvious manner with the
proviso that the caller of block must be prepared for premature returns. This is because the pending
unblock flag may be leftover from a previous coordination operation. Code invoking block must loop
so as to re-block if the awaited condition is still not satisfied.

6. Building the Parallel Operating System
Since programs written for an Ultracomputer-like machine will generate hundreds or thousands

of concurrent activities, we will encounter a correspondingly high level of simultaneous requests for
operating system services. Serial processing of these requests will generate unacceptable bottlenecks
on a large machine. Therefore, the kernel must itself be a highly parallel bottleneck-free program.

We have already outlined an implementation of processor scheduling satisfying these
constraints. The synchronization primitives and data structures described below in the context of the
operating system are equally applicable, with minor implementation differences, in user applications.
These algorithms have been implemented in an experimental operating system running on a
prototype (8-processor) Ultracomputer. Based on UNIX Version 7, the experimental system is
symmetric (Le., there is no master-slave relationship) as well as parallel. As described earlier, the
system incorporates facilities for parallel applications programs. Work has commenced on a 4.3
BSD-based follow-on system.

-206-

6.1. Data Structures
All operating system functions make heavy use of centrally stored concurrently accessible data

structures made possible by the fact that simultaneous references to the same memory location can be
accomplished in the time required for one reference. Here we consider a few structures that have
proven useful.

We have avoided pure linked lists, since we know of no bottleneck-free algorithm for deleting
items in a linked list. The desirable characteristics of linked lists must be found in other structures.
As will be seen, many of these structures use linked lists as subcomponents.

6.1.1. Queues Queues similar to those employed for process scheduling are used by
synchronization primitives: The set of processes waiting for a lock or an event are held on such a
queue.

The queues used by the operating system are somewhat different from the simple array
implementation discussed earlier. We obtain queues of unbounded size by associating a linked list,
protected by a semaphore, with each element of the array. An insertion at array element j appends
its item to the list associated with element j. The maximum concurrency supported by this structure
equals the number of lists, i.e., the size of the array (see Rudolph [82]). A variation of this queue
structure in which FIFO ordering is relaxed is also frequently used, e.g., to manage a pool of free
items to be allocated.

A similar structure results when hash tables are used to access indexed (dictionary) information.
The size of the hash table (number of buckets) is set according to the desired maximum concurrency,
usually the number of PEs times a small factor. The buckets are linked lists, protected by readers
writers locks, so that if no updates are occurring, items are accessed with no serialization. An
example is given below.

6.2. Memory Allocation
The creation of a new process requires allocation of space for its u-block as well as its private

data and stack segments, if any. As with process management, we adopt a self-service mechanism.
A number of parallel algorithms for memory management have been designed, including (non
demand) paging, two variants of the Buddy System (Knuth [68]), and a boundary tag method (Knuth
[68]). All are parallel analogs of serial algorithms. All, except for one of the Buddy System
variants, maintain queues (whereas their serial analogs keep lists) of free memory blocks.
Insertions, deletions, and accesses to blocks within a concurrently-accessible queue are at the core of
these algorithms; as a consequence we obtain critical-section-free memory allocation.

6.3. Coordination Primitives
An ideal situation for parallel execution occurs when completely asynchronous behavior is

permitted, as in some "chaotic" algorithms. Unfortunately, however, it is sometimes necessary to
coordinate processes' accesses to shared data structures. In these cases one must be careful to permit
as much parallelism as possible. Here we discuss three mechanisms for process coordination that we
have used successfully in our kernel, namely counting semaphores, readers/writers locks, and events.
When designing such mechanisms, one must specify whether a processor denied permission should
(busy) wait, or suspend execution of the current process and switch to another.

6.3.1. Busy-Waiting Synchronization Despite the potential for waste in busy-waiting, there
are several reasons for using it, including potentially low overhead and applicability to situations
where context switching is inappropriate 10. We have used busy-waiting counting semaphores and
readers/writers synchronization extensively and have described algorithms for them before (see
Gottlieb et ale [83a]).

lOE.g., in the implementation of non-busy-waiting mechanisms themselves.

-207-

Semaphores are often used to serialize access to a small partition of a larger concurrently
accessible data structure; for example, the individual linked lists used to implement queues of
unrestricted size.

Readers/writers synchronization is used naturally in cases where exclusive access is required
only infrequently. We also support upgrading a read lock to a write lock and downgrading a write
lock to a read lock, and have used the resulting protocols to implement search structures that must
support the operation: "search for an item, and insert it if not found". The inode table in our UNIX
kernel, for example, is implemented in this manner. Such a structure uses linked lists accessed
through a hash table, as described in Section 6.1.1. By performing the search with a read lock,
serialization is avoided in many instances including the important case in which many processes
search for the very same inode (e.g., the root inode). Only if the inode is not found is it necessary
to upgrade to a write lock. The upgrade operation may fail in which case the process goes back to
search again (while the one process that succeeds performs the insert).

6.3.2. Non-Busy-Waiting Synchronization Process-switching synchronization is commonly
used in multiprogramming systems since it permits a processor to continue performing useful work
when the progress of the current process is logically blocked. As in other multiprocessor UNIX
implementations (e.g. Bach and Buroff [84], Felton et al. [84]), we have replaced the internal kernel
sleep and wakeup mechanisms. For each of the new mechanisms described in this section, when a
process must block the PE places it on a queue associated with the condition to be satisfied, and
executes the next process from the ready queue. When the condition is eventually satisfied, the
blocked process is moved from the waiting queue to the ready queue. Unlike other implementations,
we avoid critical sections in many cases by using fetch-and-add and concurrently-accessible queues.

The best examples of non-busy-waiting synchronization come from the area of I/O processing,
which takes on special significance for the Ultracomputer, because large numbers of processes can
simultaneously perform related I/O operations. For example, searching of important file system
directories would be a bottleneck if serialized. Since a group of processes reading such a directory
would likely all attempt to read the same disk block; serialization would be devastating.

At a low level, physical 110 devices require serialization; this is easily provided by semaphores.
Apparent parallelism can be achieved via in-memory buffer cacheing. Once a disk block is copied
into a memory buffer, it may be concurrently accessed for reading; readers/writers synchronization is
appropriate in this situation.

Process-switching synchronization is also used to implement events, which are often associated
with external occurrences, such as the completion of an 110 operation. At such a time, the event is
signaled, remaining in this state until reset. Additional signals (before the reset) have no effect.
Since an event might never happen (consider input from a user's terminal), it must be possible to
terminate a process that is blocked on such an event ll . We have developed a method of premature
unblocking for all of the non-busy-waiting synchronization primitives described above. This requires
the interior removal primitive previously mentioned in Section 4.1.

There is a special difficulty in designing bottleneck-free algorithms for readers/writers and
events, because the most natural implementation would require a single process to completely empty
a queue. For example, when an event is signaled, all processes waiting for it must be awakened.
One solution to this problem is to move the wait queue as a single object onto the system ready
queue, where it will be treated in much the same way as an item with multiplicity. Our current
implementation lets newly awakened processes "help out" by waking up other processes. This latter
approach is less complex than the "queue of queues" method, but requires more time.

HOf course this is actually done as part of signal handling.

-208-

7. Conelusion
The forthcoming emergence of highly parallel machines will require that essentially no serial

bottlenecks are introduced by either hardware or software. The fetch-and-add coordination primitive
provides a simple and powerful means for achieving this goal by permitting programmers to employ
shared data structures without relying on critical sections. We believe that parallel operating systems
can be built that perform the traditional functions of resource management, scheduling, and
coordination using critical-section-free algorithms. The prototype NYU Ultracomputer operating
system has been constructed to demonstrate· the feasibility of this approach. Results to date are
highly encouraging.

One way to facilitate the early use of highly parallel computers is to furnish a simple
programming model that permits users to write programs using variants of conventional high-level
procedural languages. Further experience is needed to determine whether the operating system
primitives that have already been designed will effectively support the parallel constructs needed for
such languages. It is especially important that these high-level mechanisms not introduce
inefficiencies that would prevent their widespread utility. In particular, using these mechanisms must
not significantly reduce the parallelism obtained. A variety of approaches to parallel control and
scheduling is being studied for the support of a wide range of parallel applications.

References

J. R. Allen and K. Kennedy, "PSC: A Program to Convert FORTRAN to Parallel Form", in
Supercomputers: Design and Application, Kai Hwang, Ed., IEEE Computer Science Press, 1984.

M. J. Bach and S. J. Buroff, "Multiprocessor UNIX Operating Systems", AT&T Bell Laboratories
Technical Journal 63, no. 8, October 1984.

R. Baron, R. Rashid, E. Siegel, A. Tevanian, and M. Young, "Melange: A Multiprocessor-Oriented
Operating System and Environment" , Technical Report, Department of Computer Science,
Carnegie-Mellon University, 1985.

A. Borodin and J. E. Hopcroft, "Routing, merging and sorting on parallel models of computation",
Proceedings of the 14th Annual ACM Symposium on Theory of Comp uting, May, 1982.

P. Brinch-Hansen, Operating System Principles, Prentice-Hall, Englewood Cliffs, NJ, 1973.

W.C. Brantley, K.P. McAuliffe, and J. Weiss, "RP3 Processor-Memory Element", Proc. Inti. Conf.
Parallel Processing, pp. 782-789, 1985.

W. W. Collier, "Principles of Architecture for Systems of Parallel Processes" , IBM Technical Report
TROO.3100, March, 198!.

M. Conway, "A Multiprocessing System Design", AFIPS 1963 FICC, (Spartan Books, New York).

J. Davies, "Parallel Loop Constructs for Multiprocessors", Tech Report UIUCDCS-R-81-1070,
University of Illinois, Urbana, Illinois, May 198!.

J. B. Dennis and E. C. Van Horn, "Programming semantics for multiprogrammed computations",
Communications of the ACM 9, no. 3, March 1966.

E. W. Dijkstra, "Co-operating Sequential Processes", in Programming Languages, F. Genuys (ed.),
Academic Press, New York, pp. 43-112, 1968.

E. Droughon, R. Grishman, J. Schwartz, and A. Stein, "Programming Considerations for Parallel
Computers", IMM 362, Courant Institute, New York University, Nov. 1967.

J. Edler, A. Gottlieb, C. Kruskal, K. McAuliffe, L. Rudolph, M. Snir, P. Teller, and J. Wilson,
"Issues Related to MIMD Shared Memory Computers: The NYU Ultracomputer Approach", Proc.

-209-

12 Annual Computer Architecture Conf., 1985.

W. A. Felton, G. L. Miller, and J. M. Milner, "A UNIX System Implementation for System/370",
AT&T Bell Laboratories Technical Journal 63, no. 8, October 1984.

L. R. Goke and G. J. Lipovsky, "Banyan Networks for Partitioning Multiprocessor Systems", Proc.
First Annual Symp. Comp. Arch., 1973.

J. A. Gosden, "Explicit Parallel Processing Description and Control in Programs for Multi and
Uniprocessor Computers", Proc. AFIPS 1966 Fall Joint Computer Conf., Spartan Books, New York,
pp. 651-660, 1966.

A. Gottlieb, B. Lubachevsky, and L. Rudolph, "Basic Techniques for the Efficient Coordination of
Very Large Numbers of Cooperating Sequential Processors", ACM TOPLAS 5, pp. 164-189, Apr.
1983a.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir, "The NYU
Ultracomputer- Designing an MIMD Shared Memory Parallel Computer", IEEE Trans. Comp. C
32, pp. 175-189, Feb. 1983b.

A. Gottlieb and C. P. Kruskal, "Coordinating Parallel Processors: A Partial Unification", Computer
Architecture News, pp. 16-24. Oct. 1981.

E. A. Hauck and B. A. Dent, "Burroughs' B6500/B7500 Stack Mechanism", AFIPS 1968 SJCC, pp.
245-251. Also in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples, McGraw-Hill, 1982, pp. 244-250.

K. Kennedy, "Automatic Transformation of FORTRAN Programs to Vector Form", Technical
Report 476-029-4, Department of Mathematical Sciences, Rice University, October 1980.

D. Klappholz, "Stochastically Conflict-free Data-base Memory Systems", Proc. Inti. Conf. Parallel
Processing, pp. 283-289, 1980.

D. Klappholz, "Parallelized Process Scheduling for a Tightly-Coupled, MIMD Machine", Technical
Report, Division of Computer Science, Polytechnic Institute of New York, 1982.

D. E. Knuth, The Art of Computer Programming, v. 1, Addison-Wesley, 1968.

C. P. Kruskal, "Supersaturated Paracomputer Algorithms", Ultracomputer Note #26, Courant
Institute, New York University, 1981.

C. P. Kruskal and A. Weiss, "Allocating Independent Subtasks on Parallel Processors", Proc. Inti.
Conf. Parallel Processing, pp. 236-240, 1984.

D. Kuck and D. A. Padua, "High Speed Multiprocessors and Their Compilers", Proc. Inti. Con/.
Parallel Processing, 1979.

D. H. Lawrie, "Access and Alignment of Data in an Array Processor", IEEE Trans Comput. C-24,
pp. 1145-1155, Dec. 1975.

S. F. Lundstrom and G. H. Barnes, "A Controllable MIMD Architecture", Proc. Intl. Conf. Parallel
Processing, pp. 19-27, 1980.

K. McAuliffe, Ph.D. thesis, Courant Institute, New York University, 1986, in preparation.

V.A. Norton and G.F. Pfister, "A Methodology for Predicting Multiprocessor Performance", Proc.
Inti. Conf. Parallel Processing, pp. 772-781, 1985.

G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. McAuliffe, E.A.
Melton, V.A. Norton, and J. Weiss, "The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture", Proc. Intl. Con/. Parallel Processing, pp. 764-771, 1985.

G.F. Pfister and V.A. Norton, " "Hot Spot" Contention and Combining in Multistage
Interconnection Networks", IEEE Transactions on Computers, October, 1985, pp. 943-948.

D.P. Reed and R.K. Kanodia, "Synchronization with Eventcounts and Sequencers", CACM 22, pp.
115-122, 1979.

-210~

L. Rudolph, Software Structures for Ultraparallel Computing, Ph.D. thesis, Courant Institute, New
York University, Feb. 1982.

J. T.Schwartz, "Ultracomputers", ACM TOPLAS 2, pp. 484-521,1980.

J. Wilson, Ph.D. thesis, Courant Institute, New York University, 1986, in preparation.

*A UNIX(tm) SUBSYSTEM ON THE CRAY TIME SHARING SYSTEM (CTSS)

Karl Auerbach
As consultant to:
ZeroOne Systems

2431 Mission College Blvd
Santa Clara, CA 95054

Auerbach#K%MfE®LLL-MfE.ARPA

ABSTRACT

A UNIX(tm) subsystem has been con
structed for the Cray Time Sharing
System (CTSS.) The subsystem pro
vides CTSS users with many System V
facilities. UNIX processes are created
by sub-partitioning a CTSS user pro
cess. The UNIX file system has been
extended to permit UNIX data files to
be stored in CTSS files or on a mass
storage system. Each user of the sub
system has his own copy of the UNIX
kernel and UNIX root filesystem.
Major directories (/bin, /lib, etc) exist
as read-only, mounted file systems,
shared by all UNIX users.

THE NMFECC

The National Magnetic fusion Energy
Computer Center was established in
1975 by the Department of Energy.
The NMfECC provides large-scale
computational support to the Magnetic
fusion Energy community and the
large energy research community.

* This work was performed under the
auspices of the U.S. Department of
Energy by the Lawrence Livermore
National Laboratory under contract W
7405-Eng-48 and with partial support
by NASA under contract NAS2-I1065.

UNIX is a tradem ark of AT&T Bell
Laboratories.

Robin O'Neill
National Magnetic fusion
Energy Computer Center

Lawrence Livermore National Labs
ONeill#R%MfE®LLL-MfE.ARPA

The center presently supports nearly
4,000 users.

MfECC's central computer resources
include the following:

Cray 2 -- 200 Mflops
CPUs: 4
Memory: 512 Mbytes
Disk: 9.6 Gbytes

Cray XMP -- 140 Mflops
CPUs: 2
Memory: 16 Mbytes
Disk: 9.6 Gbytes

Cray IS -- 35 Mflops
CPUs: 1
Memory: 16 rv1bytes
Disk: 7.8 Gbytes

Cray 1 -- 35 Mflops
CPUs: 1
Memory: 8 Mbytes
Disk: 6.6 Gbytes

The Crays are supported by a mass
storage subsystem containing 820
Gbytes of storage in nearly 900,000
separate files.

CTSS

All of the Crays at the NMFECC op
erate under the Cray Time Sharing
System (CTSS.) CTSS was developed
at the Lawrence Livermore Labs and
has spread to approximately 20 instal
lations.

-212-

CTSS is unlike other time sharing sys
tems. Users are isolated from one
another by strong partitions. Files are
typically not shared between users.
The demand for sharing is satisfied by
the current CTSS mechanisms and
UNIX-like sharing would not be con
sidered desirable.

The CTSS file system contains a
"public" area in which sharable files
are placed. Such files may be modi
fied only by users or programs with
the requisite trust level.

Private files are destroyed ("purged")
on a regular basis. Users are required
to move permanent files to a mass
storage subsystem. Public files are
immune from the daily purging.

CTSS itself imposes no structure on
file contents. A CTSS program per
ceives a file as a stream of 8-byte
words.

A user may have up to five "suffixes."
Each suffix is equivalent to a terminal
session. A user may easily switch be
tween suffixes. A user may initiate
programs or commands under each suf
fix and allow them to proceed in par
allel. An active suffix contains a
chain of one or more CTSS processes
having a parent-child relationship.

The memory of a CTSS process con
sists of a single contiguous address
space containing both instructions and
data. There is no means to protect
the instructions from sel f-modi fication.
CTSS system calls give the program
the means to control the upper bound
of its memory space.

CTSS is a swapping, not a paging, sys
tem. Process images are written into
a user file called a "dropfile. " In ad
dition to being a place to store swap
images, the dropfile acts as a check
point, allowing restart of a program.

All CTSS terminal I/O is asynchronous,
half duplex, and with no type-ahead
capabilities. Terminal input is echoed
and consolidated into line images by
front-end processors. There is no
means for a CTSS program to perform
full-duplex or character-at-a-time ter
minal I/O.

ARCHITECTURE OF THE eRAYS

For most programs, CTSS maps the
di ffering archi tectures of the Cray 1,
Cray XMP, and Cray 2 machines into
a single abstract machine type. How
ever, to improve performance, CTSS
UNIX takes advantage of the special
capabilities of each machine when pos
sible.

The memory management hardware of
the Cray machines uses simple base
and limit registers. The Cray 1 has
on ly one set of these registers and
thus does not support the existence of
pure text segments. The Cray XMP,
on the other hand, has two sets and
permits a splitting of instruction and
data spaces, much like the PDP-II/70,
thus allowing the normal UNIX sharing
of pure text.

The Crays do not use segmented or
paged memories. All memory seg
ments must be physically contiguous.
On the Cray 2, wi th 512 megabytes of
main storage, this is not a particularly
severe constraint. However, on the
other machines, memory is a prime
resource which must be carefully man
aged and conserved.

The Cray XMP and Cray 2 support
multiple processors sharing a common
memory. For the present, allocation
of processors is left to CTSS. In the
future, CTSS-UNIX may undertake to
perform its own processor allocation
and scheduling.

-213-

Interrupts and context switches are
relatively expensive operations on the
Cray machines. The amount of pro
cess context which must be saved is
large. On the Cray 1 and XMP the
hardware context is 5120 bytes. On
the Cray 2 it can be an order of
magni tude larger.

OBJECTIVES OF CTSS-UNIX

CTSS-UNIX is not intended to be a
perfect emulation of UNIX. Rather,
the purpose is to deliver UNIX-like
capabilities as an extension of CTSS.

One specific objective is to provide
UNIX shells and many of the standard
UNIX utilities. It was recognized
from the outset that tools requiring
full-duplex or raw-mode terminal I/O
would not be feasible.

Another goal is to use the UNIX sub
system as a means of imposing a hier
archical view upon the flat CTSS file
space.

It is very important that data files
developed by UNIX or CTSS utilities
be easily shared between the two en
vironments. In addition, it is desirable
that the UNIX environment allow the
execution of CTSS commands and pro
grams.

Finally, with the recent emphasis by
Cray Research on UNIX as the native
operating system for some of their
machines, it is fel t that a UNIX pro
gram execution environment will pro
mote the interchange of software with
other Cray sites, such as the Numeri
cal Aerodynamic Simulator (NAS) at
the NASA Ames Research Center.

UNIX PROCESS AND MEMORY MAN
AGEMENT

At the NMFECC a true system V ker
nel exists as an unprivileged CTSS
process. The CTSS-UNIX kernel uses
a CTSS system call which allows the
kernel to subdivide its memory among
multiple, simultaneous Unix processes.
for example, the UNIX kernel can
load a UNIX process into its memory
space, set up tables describing the
context of that process, and tell CTSS
to run that process. The kernel de
fines base and limit registers confining
the process to a subset of the kernel's
own space. When the child process
attempts to make a system call, or if
a fault occurs, the context of the
child process is saved and control re
turns to the kernel. The UNIX kernel
then examines the saved context and
processes the system call or the ex
ception.

On CTSS, the level of interactivi ty
quickly deteriorates as the size of the
process is increased. To provide a
reasonably interactive UNIX system on
CTSS there must be a dynamic mem
ory management system to ensure that
only the minimum amount of memory
is used. for the CTSS-UNIX system,
the total memory requirement is ad
justed as needed. The system starts
with enough memory for itself and
two copies of the shell, the low water
mark. As UNIX proceeds, there may
be some user processes reqUiring more
memory than is currently available.
Many others will simply run within the
established limits. The CTSS-UNIX
system maintains a global system vari
able, XTRAMEM, that holds the num
ber of words being used beyond the
low-water mark. Each user process
keeps track of its own portion of this
"extra" memory in an entry in the
proc structure, P XTRAMEM. The
following is a structured description of
the dynamic memory management pro
cedure.

-214-

The following procedure occurs when
ever a user process calls "exec":

If all other processes were swapped
out would there be enough memory to
load the new process?

Yes: Process "exec" normally.
No: Compute CTSS-UN[X memory

to fit process plus N
additional words for
possible further needs

[s needed memory beyond
limit?

Yes: return error
No: Allocate memory

XTRAlVIEl\!l += extra
memory allocated

P XTRAtvlEM += extra
memory allocated

The following procedure occurs when
ever a user process calls "exit":

Is XTRAMEM > O?
No: Process "exit" normally
Yes: Is P XTRAMEM > O?

No: Process "exi ttl
normally

Release P XTRAMEM words
XTRAMErvT -= P XTRAMEf\,1
P XTRAlVlEM = 0
Process "exit" normally

A similar procedure exists for the
"sbrk" system call. Since memory ex
pansion on CTSS is expensive (CTSS
forces the requesting process to be
swapped for each expansion) there is
always an additional amount of mem
ory added to each expansion in antici
pation of future needs (such as further
"exec" and "sbrk" calls.) The addi
tional amount of memory to be added
is defined by a tunable, global system
variable.

When the CTSS-UNIX system wishes to
release its extra memory, it attempts
to simply release the desired amount
from the end of its memory space and
return. However, the system's mem-

ory may become fragmented enough
that there may not be enough free
memory at the end of the space to
perform the release. In this case, the
system searches for the process that
follows the first hole in memory and
moves it up, which essentially moves
the hole nearer the end of memory.
The system then tests to see if there
is enough free space at the end to
perform the request. If not, the pro
cedure repeats until all the holes are
pushed to the end. The extra memory
is then released with the remaining
memory compacted.

[n an attempt to further increase in
teractivity, the swap mechanism has
been modified. For process swapping,
the UNIX I/O request queuing has
been replaced with a single CTSS I/O
call. It was also found that the
"sbrk" call could be enhanced. Previ
ously, "sbrk" expansions would have
tried to find enough free space in
which to copy the entire process, wi th
its new size. If enough space could
not be found, the process was
swapped, in order to create it. In-
stead, "sbrk" now attempts to locate
the additional amount of space imme
diately following the process in mem
ory. [f found, the additional memory
is simply annexed by the process,
without copying or swapping.

The lack of separate data and code
segments on the CRAY -1 has led to
the consideration of the Berkeley
UNIX "vfork" system call in order to
avoid copying the entire shell image
for every command.

further attempts to increase the sys
tern's efficiency have revealed a
problem wi th the System V
"fork/swap" mechanism.

-215-

FILE AND DIRECTORY MANAGE
MENT

The fi Ie system presented to a CTSS
UNIX program or user is essentially
that of standard UNIX. Indeed, the
file management portion of CTSS
UNIX consists largely of unmodi fied
code from the System V kernel.

Objects representing UNIX filesystems
are stored in CTSS fi lese These fi les
are structured using the standard
UNIX data structures (e.g. the
"superblock", inodes, etc) and are ini
tialized using the standard "mkfs"
UNIX utility. Even the "fsck" utility
may be used.

Two new system calls were added to
manipulate the binding of a CTSS file
to a UNIX special device. In this way
it is possible to not only attach CTSS
files as virtual disk-based file systems,
but also to attach CTSS files as vir
tual tapes or raw devices for use by
"cpio" or other utilities. These calls
are restricted to the superuser.

File system mounting works just as in
standard UNIX.

The disk and in-core inode structures
have been enhanced. An IfCTS flag
has been added to the i mode field.
When IFCTS is set the associated file
exists not within the UNIX file system
itself, but rather, is is stored within a
CTSS file. for such files, the block
pointer field of the inode is used to
hold various information including the
CTSS name of the file.

This works quite well. Most programs
do not detect a di fference between
CTSS-based IfCTS files or "internal"
IFREG files. Even executable, "a.out",
can be run from IFCTS files. All
standard UNIX operations, including
linking, work.

A few problems have been observed:
When a user program (or the "test"
command) examines the i mode field
of the inode. To reduce the problem,
the "fstat" and "stat" systems calls
coerce the i mode flags so that an
IFCTS file appears as a regular,
IfREG, file with the IfCTS flag ap
pearing outside of the IfMT mask.
The fsck program will be modi fied to
tolerate the new inode form and also
to allow the existence of fi les which
do not consume any space in the file
system.

Within the kernel, IfCTS and IfREG
are mutually exclusive. This was per
haps a bad choice. Had IfCTS been
created as a modifier to the file for
mat (IFMT) rather than a file format
in its own right, then it would have
been possible to store other file for
mats (e.g. UNIX directories) in CTSS
fi les.

By default all regular files are created
as IfCTS files. However, the "mode"
parameters of the "open" and "creat"
system calls have been extended to
allow files to' override the default.
The main use of this facility is to
maintain configuration files (e.g.
/etc/passwd) and executables (e.g.
/bin/sh) which tend to exist as inter
nal, "IfREG" files. This capability
may eventually be restricted to the
superuser.

CTSS has a maximum file name size
of 8 single-case characters. No at
tempt is made to compress a UNIX
file name into this space. Rather, a
name is generated from the inode
number and user ide This tends to
prevent name collisions. However, if
a user views his private file space di
rectly from CTSS he will see what
appears to be files with meaningless
names.

-216-

New UNIX system calls have been
created to manage the association of
CTSS files with UNIX paths. One new
calls allows a pre-existing CTSS file
may be associated with a new UNIX
path. When a "text" file (described
below) is associated, the CTSS-UN[X
kernel opens the file and examines its
contents to locate the end-of-text
(which, under CTSS, is not necessarily
near the physical end-of-file.)

Another new system call allows the
inode to be unlinked (assuming the link
count is one) without destroying the
underlying CTSS file. A third new
call can be used to give a meaningful
name to an underlying CTSS file.

All file I/O goes through the UNIX
buffer cache. CTSS-UN[X uses 4K
byte buffers to match the CTSS inter
nal buffer size and disk allocation
unit.

Although the kernel of neither system
cares about file contents, the CTSS
and UNIX utilities have somewhat dif
ferent means of representing text.
CTSS uses the ASCII "US" character
as an end-of-line marker and the
ASCII "FS" as an end-of-text-file
marker. CTSS utilities sometimes
compress strings of blanks into a two
character sequence.

[n order to mask some of these dif
ferences in text representation, IFCTS
files may be tagged in the inode as
being either "text" or "binary." For
binary files, the CTSS-UNIX kernel
makes no changes to data as it moves
between a UNIX process and the disk.
For text files the data is scanned and
US is converted to NL or vice versa,
as appropriate. This translation has a
signi fican t overhead because if re
quires the viewing of each character,
a very inefficient operation on the
Cray architecture.

No determination has been made how
to handle compressed blanks. Since
the CTSS representation uses a pair of
characters, the kernel would have to
always back track one character to see
whether the preceding character was
the escape character indicating com
pressed blanks. Proper accounting for
compressed blanks is necessary for
random seek operations.

Each user of CTSS-UN[X owns his own
root filesystem. This filesystem has
been purged of all unnecessary files to
make it as small as possible. The
CTSS-UNIX program exists as a CTSS
command and is not stored on the
root. The standard UNIX directories
/bin, /usr, and /lib exist as filesystems
stored in CTSS public files. When
CTSS-UNIX initializes, it binds these
CTSS public files to specific special
devices and mounts them as read-only
fi lesystems.

The user's root filesystem contains
/etc, /tmp, /dev, and his home direc
tory. Any new directories created by
the user are also stored in his root
filesystem. Since most files are cre
ated using CTSS files as containers,
there is rarely a problem of space ex
haustion.

Since the user's root contains all the
mapping information between UNIX
pathnames and CTSS files, it is impor
tant that the user move the root and
all CTSS files associated with UNIX
files to the mass storage subsystem
before they are purged. This may be
made an automatic function of CTSS
UNIX when a user logs out.

MASS srORAGE MANAGEMENT

For IFCTS files, the inode structures
have been extended to also contain an
indication whether the file is stored
on an on-line disk or on the mass
storage subsystem. There is also a

-217-

flag to indicate whether the file has
been altered since it was last brought
in from mass storage.

It would not be a difficult operation
for the CTSS-UNIX kernel to move a
file between on-line and mass storage
system. However, mass storage opera
tions can involve delays ranging from
tens of seconds to many hours. Con
sequently, when a reference is made
to a file which is not on-line, the ref
erencing program will receive an error
(and possibly a signaI). Then a user
level process may be initiated to bring
the file onto on-line storage. Other
mass storage operations (such as writ
ing-out an on-line file) will always be
performed by user-level processes.

TERMINAL I/O

CTSS-UNIX will remain half-duplex on
a line-at-a-time basis. The main im
pact of this restriction is on programs
which use raw mode, principally the
full-screen editors.

CTSS already has a full-screen editor
which operates, despite the terminal
I/O constraints, using an IBM PC as a
terminal. This editor will probably be
incorporated into CTSS-UNIX.

A low overhead polling mechanism is
being tried to allow some degree of
type-ahead. Its effectiveness and cost
have not yet been evaluated.

PERFORMANCE

\Ve have not yet performed any quan
titative performance measurements.
But our subjective evaluation indicates
that where comparable commands exist
between UNIX and CTSS, UNIX is only
marginally slower. The performance
degradation seems to be no worse than
that incurred by UNIX subsystems

which have existed for many years on
VAX/VMS.

CTSS-UNIX does have known ineffi
ciencies:

Image copying during a "fork" is ex
pensive and often involves swapping.

Program loading during "exec" gener
ates at least one CTSS I/O request
per block (unless the block is already
in the buffer cache.) We are consid
ering means to store com monly used
executables in contiguous, shared
(public) files so that we can load a
program wi th one I/O request.

The CTSS 3400 system call mechanism
contains some CTSS administrative
functions which slow CTSS-UNIX con
text swi tches and system call handling.
It is possible that CTSS can be modi
fied to bypass some of these functions
when CTSS-UNIX is running.

FUTURE DEVELOPMENTS

CTSS-UNIX will be extended to allow
invocation of native CTSS commands
and programs directly by the user or
by UNIX processes.

Performance improvements will con
tinue to be made. It is expected that
CTSS-UNIX can be made nearly as ef
ficient as a native mode implementa
tion, although the throughput will
never be as great due to memory and
CPU contention with CTSS programs.

CTSS and UNIX may be merged more
closely to allow better sharing of pro
grams and data.

The CTSS-UNIX kernel retains multi
user functions. Rather than having a
separate kernel and root file system
per user, CTSS-UNIX may be expanded
to be a true multi-user subsystem.

-218-

SUMMARY

The feasibility of a useful UNIX sub
system on CTSS has been demon
strated.

Some unusual mechanisms have been
employed to facilitate co-existence
with CTSS and to enhance perfor
mance. Despite these, CTSS-UNIX
presents functionality to users and to
programs that, except for full duplex
terminal I/O, is quite similar to true
System V UNIX.

Considerable work remains to trans
form CTSS-UNIX into a reliable, effi
cient production tool and user work
environment.

ACKNOWLEDGEMENTS

The original CTSS-UNIX was developed
at Cray Research Incorporated, in par
ticular, by George Spix and Dave
Slowinsky.

A Unix-based Operating System for the Cray 2

Timothy W. Hod
Bruce A. Keller

Cray Research, Inc.
1440 Northland Dr.

Mendota Heights, MN 55120

ABSTRACT

We have ported System V Unix to run on the Cray 2. A number of
changes were necessary to make it run well in our special environment.
The motivations for change and the changes themselves are described.

Introduction

Cray computers are quite different from those on which Unix typically runs. The Cray 2 has
four tightly-coupled cpu's with a 4.1 nanosecond cycle time, 256 Megawords (64 bit) of central
memory, up to 36 disk drives (currently 600 Megabytes each with 32 Megabits/sec transfer
rate), and up to four network adapters 50 rvlegabits/sec each.

The cpus and I/O channels are indeed very fast. We have demonstrated a matrix multiply
program running on all four cpus at 1.6 GigaFLOPS (floating point operations per second), and
also demonstated a single process reading data from 20 drives in parallel at 600 Nlegabits/sec.

The system designer cannot become careless, however, because some things take a long time. It
requires four disk drives to store a full memory image and, even when using four parallel I/O
streams, it requires 128 seconds to move all the data. Each cpu has a very large register
context: eight address registers, eight scalar registers, eight vector registers (each with 64
words), and 16K words of register back-up storage called "local memory". Doing a full context
switch from one process to another is, relatively speaking, expensive.

The job mix on a Cray is quite different from that of a typical Unix machine. Cray customers
primarily run large Fortran programs which often consume several hours of cpu time. They
have traditionally used a batch interface to their machines. Recently, however, customers have
become increasingly interested in using an interactive interface to test and debug their
programs. They will probably continue to use batch for their production runs. This transition
from batch to interactive is one of the reasons that Unix was chosen as the base for the Cray 2
operating system. In order to be successful, the new operating system must not only provide
good interactive service, but it must also allow sophisticated users to have full access to the raw
power of the machine.

The primary reason for Cray's success as a company can be summed up in a single word:
performance. At Cray, compatibility, simplicity, and elegance are considered to be important

virtues,

Unix is a tradema.rk of AT&T Bell Labora.tories

-220-

Cray 2 Operating System

but they fall distant second to performance. We have only made changes when we felt they
were truly necessary, and then we have tried to integrate them cleanly into the Unix
environment.

The File System

In designing the file system for the Cray 2, several requirements had to be met. First, Cray
users are accustomed to reading (and writing) data from disk at device speeds ("streaming").
But sometimes that is not fast enough. The term "striping" refers to spreading a user's file
across several drives, allocating the next piece of the file from the next drive in rotation. Thus,
the file can be read at N times the transfer rate of a single drive. The new file system had to
support both "streaming" and "striping". Second, a file's size could not be limited by the size of
a single disk drive. Third, bad blocks are not uncommon on the disk drives we use. The new
file system had to gracefully and efficiently work around them.

The Cray 2 hardware and firmware is especially good at reading (and writing) tracks of data
from the disks. After sensing the rotational position of the disk, it transfers the next sector to
the corresponding position in the memory buffer. In this way a track of data can be moved in
one revolution plus, on average, one-half sector time of latency.

To take advantage of this capability, large files are allocated and accessed track-at-a-time. A
bitmap is used to record available tracks so that as a file grows, a "nearby" track can be
allocated to minimize seek time. Since interactive systems typically have many small files, we
use a variation of the large block/small block system to avoid wasting excessive amounts of disk
space. Files that are eight sectors or less are allocated sector-at-a-time from a free list as in
standard Unix.

Our inodes contain eight pointers and a bit indicating small or large format. For a small file
these point to eight sectors (4096 bytes each) of data. For a large file the first five point to
tracks (currently 18 sectors each) of data. The sixth points to a sector containing 512 pointers
to tracks of data. The seventh is double indirect and the eighth is triple indirect.

When a small file grows to be larger than eight sectors, the system automatically converts to
large file format. This conversion requires allocating a track buffer, copying data from sector
buffers, and sometimes rereading sectors from disk. To avoid the overhead of conversion, a user
may request large file format when creating the file.

Unlike the Berkeley 4.2 file system we do not attempt to reclaim the unused space at the end of
the last large block (track). Given our environment we prefer to trade off disk space for a
simpler, faster algorithm.

A "partition" is a contiguous group of tracks on a disk drive. In addition to the major/minor
device numbers, the special node in /dev for a partition also contains other information
describing the partition, including the starting track and number of tracks. At mount time
and/or device open time this information is copied to system tables for use by the disk driver.
Previously this information was hard-coded into the disk driver which made it inHexible.

A file system resides within a "cluster", which is a group of one or more partitions. The
partitions of a cluster need not have the same size or placement, but it is expected that they
reside on different physical drives. Each partition contains its own super block, dynamic block,
inodes, and data space. The super block contains static control information about the partition

-221-

Cray 2 Operating System

including the cluster id, the number and location of inodes, and the number and location of bad
blocks. The dynamic block contains the free track bitmap, the sector free-list and other
dynamic information. The primary reason for splitting the super block into two blocks was that
the new information would no longer fit into one. Because the file system is now two
dimensional, block and inode numbers are two-tuples containing the partition number and item
within partition.

Previous Unix systems have allowed a file system to span multiple drives by having the disk
driver map the Nth block onto the (N mod D) th drive, where there are D drives in the group.
Although this accomplishes one of our goals and has the virtue of leaving the higher levels of
Unix unchanged, it does not allow the sophisticated users in our environment to have the
necessary controls over file placement. With our two-dimensional system the user may
optionally specify a bit mask at file creation time to indicate which partitions should be used to
store this file. A bit mask of all ones would indicate full-width striping for maximum transfer
rate to this file. On the other hand if the user had two files and knew that the cluster
contained six partitions, file A could be created with a bit mask of 07 and file 8 could be
created with a bit mask of 070 thereby achieving maximum transfer rates for both files and
avoiding head contention. If a requested partition is not available, the system uses other space
within the cluster and does not return an error to the user.

The standard Unix file system is vulnerable to significant corruption when a directory or inode
block becomes unreadable. We have made the file system more robust by redundantly storing
critical information in two places, on separate drives if space is available. This "shadow"
information is created and maintained by the kernel, but currently we do not use it for on-the
fly recovery. Rather, fsck can rebuild an intact structure in the event of a disk (or system)
failure.

Each directory entry contains a primary and a shadow inode number. The shadow inode is a
duplicate copy of the primary inode with the possible exception that the block pointers in the
shadow inode may refer to a second copy of the data blocks. This facility is used to shadow
directory data blocks and indirect blocks. With this design the file system tree structure itself
can be completely rebuilt after any single point of failure, even losing a whole drive. Of course
the contents of data files may still be lost and must be recovered from some backup medium.

Although it may appear that we have made fundamental changes to the file system, the
modifications were fairly localized, thanks to the clean structure of the kernel. The normal user
interface is unaffected and the kernel itself is still quite recognizable.

Asynchronous I/O

The user I/O interface in standard Unix is fundamentally synchronous. This design decision
simplified the kernel and user programs, and has worked very well in practice. The automatic
read-ahead and write-behind of the file system allows many user I/O requests to complete
imm·~diately. This design allows a group of users to share a system and all get reasonably good
performance.

It is not uncommon, however, for a Cray customer to dedicate a system to a single job for many
hours. In this environment it is important to avoid all unnecessary delays. For example,
assume a process is doing random VO to two files which reside on two different drives. In
standard Cnix there is no way for a proc:ess to overlap the seek and latency times for two I/O
requests.

-222-

Cray 2 Operating System

We have extended the user interface and added two new system calls: reada and writea.

int reada (fildes, buf, nbyte, status, signo)
int writea (fildes, buf, nbyte, status, signo)

int fildes;
char *buf;
unsigned nbyte;
long *sta t us;
int signo;

The first three arguments have the same meaning as in a standard read/write system call. The
file position is always the current position at the time of the reada/writea. The file's position is
incremented at that time by nbytes. If the I/O request can not be satisfied immediately, the
request is queued, and normally control is returned to the process. The process may block,
however, if it has too many outstanding asynchronous I/O calls or if it is due to be swapped
out. When the I/O does complete, the operating system will put a non-zero completion status
into status and send the signal signo to the process. In order to use signals as the notification
mechanism, we also had to modify the system call interface for signals to make them more
reliable; the standard user interface is now supported by a library routine.

The implementation within the kernel is uniform so that reada's and writea's may be issued on
any open file descriptor, including pipes and pseudo ttys, with the expected results. Every
device driver must now have a strategy routine. If the request cannot be satisfied immediately,
the strategy routine must queue the request and return without sleeping. A fortuitous
consequence of reimplementing pipes as a pseudo-device driver was that a new optimization was
trivial: if the writer and reader are both in memory, data is copied directly from the writer's
buffer to the reader's without going through system buffers.

It is worth noting that the capabilities of this mechanism are quite different from those offered
by the select system call of Berkeley 4.2. First, since there is no asynchronous notification
mechanism, the nature of the select call dictates a polling implementation, rather than an
interrupt driven one. Second, since there is no way to specify the size of the intended write
request, there is no way for the operating system to guarantee immediate success. Lastly, select
only provides useful information for terminals and sockets, but not for disk files.

Raw I/O

In standard Unix "raw" disk I/O has two different attributes. First, it implies moving data
directly between the device and the user's buffer, thereby eliminating the memory-to-memory
copy. Second, it implies accessing particular physical blocks of the disk, completely bypassing
the security of the file system. Because of the second attribute this mechanism is normally
restricted to super-user only, even though the first attribute could be quite useful to users who
wish to squeeze every last drop of performance from the machine. We have extended the user
interface to allow a process to specify that a normal file should be opened in "raw" mode. The
standard restriction then applies that the file must be accessed in n-sector pieces.

-223-

Cray 2 Operating System

Networking

Terminals cannot be connected directly to the Cray 2. Rather, they must be connected to a
front end computer which in turn is connected to the Cray 2 via a network. We currently use
Network Systems Corporation's HYPERchannel, a multiple-access, carrier-sense, collision-detect
network with a peak transfer rate of 50 Megabit/sec. We are in the process of adding support
for a point-to-point connection to allow fast file transfer between mainframes. Later we may
add support for Ethernet.

>From the beginning it was clear that we would have to support multiple protocol famHies
simultaneously, sometimes through the same physical interface. To support early development,
we created two simple protocols for file transfer and interactive access nicknamed SEP for
simple, effective protocols. Many of our customers currently use a Cray proprietary protocol,
named SCP, to communicate between their various front-end computers and their Cray 1 or
Cray XN1P machines. Since this is an established, proven environment most of these same
customers would prefer to continue using SCP to communicate with the Cray 2, at least
initially. Of course there is great interest in TCP/IP and it will be one of the first protocol
families available. There is also interest in Netex, ISO, and others.

Our HYPERchannel driver is protocol-independent and allows multiple processes to share one or
more adapters. Embedded in the HYPERchannel destination address is a logical port number
which the driver uses to route in-coming messages to the correct process.

Previous attempts to implement network software outside of the kernel have suffered greatly for
lack of asynchronous I/O calls (see "A Retrospective" by Dennis Ritchie, SSTJ July 1978). We
used our new asynchronous reada/writea system calls to implement both the SEP and SCP
protocols at the user level and found them to be extremely valuable.

To support interprocess communication between daemon and client processes, we have
implemented a pseudo tty driver which, internally, is rather like a bi-directional pipe. When
possible, data is moved in large blocks and, as with our pipes, if the writer and reader are both
in memory, data is copied directly from the writer's buffer to the reader's. Although these
optimizations are probably unimportant for user input, we anticipate they will be quite useful
for output to graphic work stations and/or bitmap displays.

Multitasking

The standard Unix interface allows a user to easily spawn processes which can execute
concurrently on a multiprocessor machine. However, it is not always easy to partition a
workload at a macroscopic level into separate processes that can all work together effectively.
Therefore, we also want to allow a single user program to execute concurrently on two or more
cpus. To that end, we have added a new system call, tfork, which creates a separate process,
but one which shares the same text and data space. The Cray 2 hardware supports semaphores
which these "Siamese twins" may use to cooperate.

The Fortran Multitasking Library uses tfork and semaphores to create a higher-level
abstraction of tasks, locks, and events. When there is nothing for a twin to do, it will first note
its intension in a shared table and then voluntarily give up control with a pause system call.
"Vhen another twin later realizes there is work to be done, it will awaken any sleeping twins by
sending a signal.

-224-

Cray 2 Operating System

The Initial Port

There have been several stepping stones along the way to having the system we describe here.
When we first began this project the Cray 2 did not exist. Therefore, our first goal was to port
System V onto a Cray 1 making as few changes as necessary.

Of course we had to rewrite the machine dependent portions of the kernel and write new device
drivers, but we also had to make a few significant changes. Unix assumes that the current user
structure can be remapped to a fixed address for the kernel. Since the Cray 2 hardware only
allows access to a single memory segment, this fundamental assumption is no longer is true.
This forced two changes to the kernel. First, we had to add a pointer variable called "u" and
change all references to the user structure from "u.'· to "u->". Second, the kernel stack in the
user structure is self-referencing, and, therefore, must be used at a fixed address. For our initial
port we simply copied the stack to and from a fixed location, knowing full well that we would
have to find a better solution to support multiple processors.

Unlike most Unix machines, Crays are word addressable, not byte addressable. Many
commands, and even the kernel itself, were not always careful to cast pointer arguments
correctly.

Using a Cray 1 simulator running under COS on a Cray ~P, we debugged our initial port.
Within three months Unix was up and running native on a Cray 1 with a few ported commands.

With a cross compiler on the X1v1P and other file system tools, we built a Cray 2 file system on a
disk drive, and then rolled it down the hall to the other computer room. Since it took 10
minutes to move 600 Megabytes, we figure our first Cray 2 network had an effective bandwidth
of 8 Megabits/second.

To support multiple processors, we no longer copy the kernel stack, but rather use it in place. If
the user image is moved in memory, the kernel stack is relocated to the new address. We also
had to modify the scheduler to give Unix more than one place to idle. In standard Unix when
there is nothing to do, the kernel loops on top of process zero. Since all four cpus can't run on
top of the same process, four idler processes were created. The system now only switches to
process zero when there is swapping to be done.

Conelusion

At the time this is being written (December 1985), this system is running in-house at Cray and
at two customer sites. It is quite stable and the changes we have made seem to be working out
quite well.

Ada and the UNIX System

January 17, 1986

Denver, Colorado

Ada, He", and UNIX I

Herman Fischer
/llark V Business Systems

16400 Ventura Boulevard
Encino, CA 91436

(818) 995-7671
{ihnp4. decvaJC, randvax} I herrnix I fischer

HFischerCisif.arpa

1. Introduction

1.1 Scope

This report evaluates the usages of Ada2
, C,

and UNIX3 for development and deploy
ment of Defense Department Mission Criti
cal Computer Resources (e.g., operational
military applications). It takes the perspec
tives of industry, borrowing from manage
ment oriented views expressed by the Coun
cil of Space and Defense Industry Associa
tions (CODSIA), task group 13-82; the per
spectives of technical users, as expressed by
the Ada, UNIX, and KIT/KITIA commun
ities; and the perspectives of the military
user community.

1.2 Terminology

The term, host will be used to describe com
puters, software, and systems used to
develop software. The term target will be
used to describe computers and systems
where operational software resides.

1.3 History

Ada. a language, was designed for DoD
applications (target systems), where
software reliability, maintainability, and
reusability were important; C. a language,
was designed for better implementation of
an early assembler version of UNIX (then
an Operating System plus early toolset),
where fitting the compiler into limited mini
computers was important; and UNIX, an

1. This paper was published as IIAda & C with UNIX
in MCCR" by De/erue Science F:J Electronic$ in
November and December 1985. and is reprinted
with the permission of Rush Franklin Publishing.
Inc.

2. Ada is a registered trademark of the U. S.
Government. Ada Joint Program Office.

3. UNIX is a trademark of AT&T Bell Laboratories

Operating System, was designed as a per
sonal development (host) environment for a
Bell Labs "guru" on a very early DEC com
puter with limited resources.

1.3.1 Ada

The Ada language resulted from a DoD
wide effort, beginning in 1974, to design a
common language for Mission critical com
puter resources software (e.g., embedded
applications for "target" systems). Require
ments were formalized in a series of docu
ments extensively reviewed by the Services,
industry, academia, and foreign military
departments. The Ada language was
designed in accordance with the final form
of these requirements, called Steelman.
Competitive procurements for four language
design teams led to the selection of the
"Green" Team's product, which became
known as Ada.

Ada was adopted as standard by the
American National Standards Institute in
early 1983, and is in the ISO (international)
standardization process.

The U.S. Army's Ada development efforts
expanded in concept from an Ada compiler
(only) to an Ada Language System (ALS)
environment. Softech is currently delivering
initial versions of the ALS for Army con
tractor use. Though this specific compiling
system's implementation is said to be slug
gish in performance, Softech personnel
believe the performance of later versions
will be better.

The Air Force began a competition for a
standard integrated host environment. The
successful design, by Intermetrics, became
known as the Ada Integrated Environment
(AlE). AlE was never built as designed.
AlE's designers eventually became prime
technical contributors to the CAIS (descrip
tion following), as their own ideas matured.

-226

Ada, C, and UNIX

A significant number of privatcly-funded
Ada compiler developments have been
recently validated. Most of these are of
average to moderate compiling efficiency,
and recent reports show that efficiency of
programs generated using some arc becom
ing Hdecent". There is now even an IBM
PC Ada interpreter, said to be derived from
the Army's HAda Ed", which will be distri
buted for about $100.00, and will be com
petitive in performance to the Basic inter
preter which is distributed with PC-DOS
and MS-DOS.

During the final design stages of Ada a simi
lar requirements definition effort was begun
for environments to host Ada. A document
called Stoneman identified relationships
between the tools in an integrated Ada Pro
gram Support Environment (APSE), and
forms the basis of Ada tool integration
efforts. In 1982 an evaluation team called
the KAPSE Interface Team (KIT) was
convened to define requirements for intero
perability and transportability among
KAPSEs, guidelines and conventions to
achieve this, and eventually a (set of) stan
dards. The KIT, being an all government
entity, was augmented with a team of com
petitively sought representatives of industry
and academia, known as the KAPSE Inter
face team from Industry and Academia
(KITIA).

A KIT/KITIA working group developed a
framework of interfaces to achieve tool por
tability. This Common APSE Interface Set,
CAIS, was recommended to become a mili
tary standard. Numerous arguments have
ensued as to its readiness, though all con
cerned feel it is appropriate to prototype its
concepts and encourage its further evolution
and improvement.

1.3.2 The C Language

Early UNIX code was in assembler
language. The lack of an HOL for the early
versions prompted UNIX's developer to
develop B, based on a language known as
BCPL, prior to porting the system from the
early PDP models to the PDP-II. After a
few utilities were coded in B, it became
apparent better structuring and data typing
would be needed for rewriting UNIX.

A new language was derived from B, called
C, to implement UNIX in a manageable
HOL form. The definition of C includes
only the basic data typing, data and pro
gram structuring and operations. By
separating systems-level functions away
from the language, into the operating system
definition, C has been relatively resilient to
technological changes in the underlying sys
tems which host it. C's operating system
support has changed significantly in charac
ter, as UNIX has evolved, but the basic
language itself has been relatively stable.

While there arc large numbers of purveyors
of C compilers, only a few are known to be
efficient or complete. The lack of standards
hinders portability among Hnon-UNIX" C
compilers. It also hinders consistency
needed to ensure that "tricky" language
constructs operate identically among the
various versions. Some C compilers are
quite complete and known to generate
extremely efficient object code; others lack
enough compatibility to deal with code
developed on different systems.

The ANSI technical committee X3J 11 is
chartered to develop a standard for the C
language, including its libraries (UNIX sup
port functions) and environment. The
current schedule calls for publication of a
draft in 1985.

A superset version of C, called HC++", has
been implemented, to solve C's problems
with data abstraction. C++ adds to C the
strong typing, overloading, and polymorphic
typing (generics) needed to support
programming-in-the-large and object based
programming4

•

1.3.3 UNIX

UNIX was originally designed by a Bell
Labs programmer, to solve a specific need
for a personal working environment. In
1969-1970 it ran on early Digital Equipment
computer systems (PDP-7 and -9) which
had severe limitations. By 1971 it was

4. B. Stroustrup, "Data Abstraction in e", AT&T BeU
Laboraton'e6 Technical Journal, Vol. 63, No.8,
October 1984, pg. 1701-1732,

-227

Ada, C, and UNIX

hosted on PDP-II computers, which
remained the primary host until the VAX
series debuted.

The most important achievement of UNIX,
according to its originators5, is "to demon
strate that a powerful operating system for
interactive use need not be expensive either
in equipment or in human effort... and less
than two man-years were spent on the main
systems software [kernel, early utilities,
etc]..."

The original versions of UNIX were written
in assembly language; however, during the
summer of 1973 it was rewritten in C. The
HOL version of UNIX was about one third
larger than the MOL version, but became
the standard. In the larger size was
included multiprogramming, reentrant code
sharing, and some other features; these
improvements more than offset the loss in
kernel space.

Once implemented, the UNIX environment
grew by contributions of tools which
became incorporated into the UNIX distri
butions. Today "UNIX" is far more than a
traditional host operating system, because of
the rich collection of environment tools and
supporting features which comes with it.
UNIX embodies several choices of pro
grammable command interpreters (called
shells); a configuration management system
for software development libraries; an
unusual language for pattern matching,
report generation, and associative array pro
cessing, called AWK; several powerful edi
tors and text composition facilities, a robust
set of electronic mail and communications
utilities; and as widely known, the C pro
gramming language and supporting tools for
debugging and managing software develop
ments in C.

With UNIX, each added tool appears to the
interactive user to become an intrinsic basic
command or part of the system. Addition of
a spreadsheet program, or of an accounting

5. Ritchie, D., and Thompson, K., The UNIX Time·
Sharing Sy3tem, Western Electric Co., Inc., October
1981

program, normally appears to be integrated
in the sense that they can pass data amongst
each other. This feature, of growth by addi
tion of tools, has been popular with users,
because it allows each user to custom-tailor
his operating environment to his own needs.

Though there have been a few attempts to
use subsets of UNIX in embedded targets
(e.g., switching centers originated at Bell
Labs), little has been reported in the public
literature, and there are no known sales
efforts to distribute any UNIX-compatible
interfaces for embedded (diskless or
operator-less target) applications systems.

1.4 Standardization

Ada, and C with UNIX, both derive their
impetus from the perceived needs for stan
dard languages (and operating systems inter
faces). While early software developers felt
nonstandard languages would help them
preserve customer bases (by limiting com
petition), today's commercial and govern
ment marketplaces demand standard
software languages, standard operating sys
tems, and interoperable environments.
Indeed, UNIX's popularity is due largely to
the perceived ability to port UNIX onto
nearly any ISA (hardware), and thus be
largely hardware independent. One of the
key issues identified by the CODSIA task
group J3-82 was industry's identifying a
need to preserve an environment of COIl

ti/wing Competition, an obvious benefit of
standardization. But rather tan concentrat
ing on standardization, we should examine
the purpose of each of these entities.

1.5 Purpose

This section examines why Ada, C, and
UNIX exist.

1.5.1 Purpose of Ada

Ada is a language for expressing computer
programs which is particularly suited to
000 (and other users') needs for reliable
software which can be maintained by a
wide base of programming talent. Ada has
features which make it particularly suitable
for programming-in-the-lal'ge, e.g., for
software efforts whose total size often
exceeds 1/2 million lines of source coding,
and requires large teams of programmers,

-228

Ada, C, and UNIX

often characterized by a high turnover in
personnel.

Ada defines many mechanisms to help catch
erroneous program constructs, and to aid in
producing reliable software. Ada also
emphasizes two aspects necessary for
programming-in-the-large, modularization
and interface control (e.g., strong type
checking across modules written by dif
ferent authors).

Ada is intended for both computer pro
grams which must operate in embedded tar
get systems (such as systems with neither
disk storage or interactive operator termi
nals), and those which operate in more trad
itional environments (timesharing manned
systems). It is intended to be useful for
both target applications and development
(host) tools.

Ada is intended largely for computer pro
grams which are maintained separately from
their users. Ada programs must be com
piled and linked together before they can be
installed (they have static linkages). To
install new software, a user will have to shut
down his operations and load the new pro
gram. This is in contrast to most business
users, such as banks and 000 MIS users,
where software maintenance is done on the
same hardware as applications are used.
The common practice with Cobol is to use
dynamic linkages between programs, which
permits the using organization to replace or
upgrade specific programs without shutting
down the entire system to load a newly
linked set of software. [CATS attempts to
provide dynamic linkages outside of the
scope of Ada.]

1.5.2 Purpose of C

C was originally designed for expressing
computer programs which needed to both
be compiled and be executed on minicom
puters which had severe limitations on
hardware resources. C was an attempt to
separate the language definition from the
run time environment. C models basic
operators and operands of most current
computers, but is indeterminate with respect
to many attributes of the target (run time)
environment. A C program is thus insepar
able from the definition of the functions

provided by the run time environment (such
as UNIX), while more robust languages,
such as Ada, define basic resource control,
input/output operations, as intrinsic parts of
the languages.

C has been used successfully for building
UNIX, thousands of small (one to five man)
projects, some medium-size projects, and
even a few military systems. The author
feels C is highly suitable for programming
in-the-small or -medium, but unless aug
mented with new features, remains difficult
or unwieldy for programming-in-the-large.
C gives the programmer a significant degree
of expressive freedom, and is known to be
efficient to execute.

C as a language (e.g., exelusive of UNIX
style system level services) is suitable for
both host system tool development and tar
get system applications. However, no stan
dards or guidelines are in common use with
respect to "non-UNIX" non-host use of C.
Most embedded targets using C have
developed their own system interfaces (from
scratch), and thus are of very limited porta
bility or reusability.

1.5.3 Purpose of UNIX

UNIX is primarily a host-environment (disk
and interactive terminal based) operating
system.

UNIX is today a confusing term because it
connotes three things to most listeners:

• a specific implementation of an operat
ing system,

• a set of utilities and user services which
augment a basic operating system to
comprise an environment,

• a definition of a set of standard inter-
faces.

This confusion is compounded because
UN IX appeals to three classes of users, with
different viewpoints:

• Software developers

• Embedded system applications designers

• Office and Data Processing users

The UNIX kernel performs low-level
input/output, resource control and

-229
Ada, C, and UNIX

scheduling, and provides an intrinsic model
of data structures (file system model) visi
ble to user-level services.

The user services available through several
choices of programmable command inter
preters (shells) include software develop
ment tools, documentation and text process
ing tools, and electronic mail communica
tion tools. This set of user services is exten
sible as the user adds tools and programs to
his private and the system's libraries (such
as addition of spreadsheets and report writ
ers).

The UNIX services available by function
call to software programs include functions
such as file reading/writing, multiprogram
ming, and data interoperation with tandem
programs. These, too, are well integrated,
and user-extensible.

But one should realize that UNIX is not for
all embedded targets.

UNIX definitions and services apply pri
marily to host (development) systems and to
target systems with disk storage and interac
tive users/terminals. UNIX subsets have
been (sparsely) applied to embedded appli
cations; usually embedded targets developed
with UNIX use special target runtime
environments.

Employment of current UNIX coding for
embedded targets (those without either
disks or interactive terminals) is difficult.
Thus use of UNIX in embedded systems
would be restricted to a subset of the inter
face definitions. (This does not, however,
restrict UNIX's usefulness as a host for
delleloping software for such systems.)

1.6 Issues and Criteria

A number of the issues raised in CODSIA
Report 13-82 facilitate the comparison of
Ada, C, and UNIX. These arc:

a. Expensive and Lengthy System
Development and E,'oilltiOJl. DoD sys
tems take long time periods to
develop, and are then supported 1'01'

long periods. Most military systems'
lifetimes exceed hardware and
software ~'generations", and must thus
be able to respond to changes in evolv
ing hardware technology. Software

must be able to be ported to replace
ment hardware, and must itself be
evolvable as tactics, requirements, and
the military environment change.

Related to this topic is the often large
scope of military systems' software
projects. Often these exceed one half
million source lines on a give project,
thus casting them as programming in
the large.

b. High Cost and Risk for NOlltransport
able Software. Present generation mil
itary systems often have justified
assembly coded software, and design
of project-specific language environ
ments and extensions, because tight
control of computing resources was
necessary to meet the real time
requirements, and the economics of
the system. Though language com
monality, as a solution to transporta
bility issues, has been addressed for a
while (and, indeed, led to the Ada
program), DoD and industry are only
beginning to address a central aspect
of true transportability -- run time
software environment compatibility.

c. Technology insertion. Technology
insertion traditionally addresses black
box hardware replacements. Today it
must additionally address retention of
software where hardware is upgraded,
upgrading of software (both in
functionality/operational needs, and in
technological sophistication), and more
fundamental technology changes (con
verting from Ada or C to non-Von
Neumann implementations such as
Lisp and Prolog, or from procedural
implementations to knowledge-based
implementations).

Two primary concerns are the upgrad
ing of the fielded system and its appli
cations software, and the upgrading of
the support software (Language, tools,
host as, etc).

d. DoD l'ersus Voluntary Standards. Ada
has taken over ten years to evolve
from a concept to a field of validated
immature compilers. (Cobol and Ada
are, however, proofs that DoD can

-230

Ada, C, and UNIX

make valuable contributions to stan
dardization processes.) C was
designed and initially implemented by
one person, about when the need for
Ada was perceived, and in the same
ten years, matured to become a widely
accepted systems implementation
language. Most college students today
have C training, somewhat like the
situation ten years ago when most had
Fortran training, because it is a
mature, conservative choice, and
enjoys significant support.

e. Preserving competition. The implemen
tation of DoD-owned Ada compilers
(when compared, pcrformancewise, to
compilers implemented by commercial
competitors) seems a clear case-point
on the need for competition. While
both public law and common sense
demand that DoD maintains competi
tion in its software supplier commun
ity, one need only look at the current
experiences with developcrs of com
plex software. Developers spurred on
by competitive pressures seem to
succeed where DoD captive projects
take excessive schedules, and provide
less capable performance.

2. Comparing Languages to Operat-
ing Systems

While it might appear silly to compare a
language (Ada) without an operating system
to another language (C) in combination with
an operating system (UNIX), this is relevant
in the case of C for a simple reason: C
defines only the syntax and semantics of
data manipulation, procedure calling, and
control structures, leaving to the program
ming environment (UNIX) the definition of
input/output, resource control, and real
time interprogram communication. On the
other hand, Ada defines in the language
itself the real-time communications between
concurrently operating programs, the
resource control features (data storage allo
catioa), and rudimentary input/output
(especially as these pertain to target, as well
as host environments). Ada does not define
sophisticated input/output, sophisticated
features for time sharing, data/file system
storage models, or other of the higher level

features usually found in host operating sys
tems. Thus UNIX, added to C, provides a
significantly larger set of system features
than Ada alone has. Of course there is no
reason why one could not compare C with
UNIX to Ada with UNIX. That would be
more fair.

2.1 Host Environments

UNIX represents a host (development)
environment, as well as an environment for
applications which have similar hardware.
For Ada, the KIT/KITIA have come up
with a proposed set of software interfaces
which provide benefits of tool-level porta
bility and interoperability, the CAIS. (CAIS
does not, however, connote a specific 44tool
collection" as is the case with UNIX.)

2.2 CAIS

In the sense that a portion of UNIX (C
library) is required to augment the machine
independent portion of C with sufficient
functions to be useful in an operating
environment, Ada must also be augmented
with functions, at least in the host system
environment, because it too lacks tool sup
port functions (of the sort provided by
UNIX). Two key features absent from Ada
arc the underlying model of the system level
data, and the ability to support dynamic
binding (process control). The Common
APSE Interface Set, CAIS, defines a /lode
model (file system model) and a dynamically
bound modcl for multiple independent pro
grams to inter-react as processes in real
time. CAIS augments Ada with some of the
(library-level) functions found in UNIX.
CAIS does not seek, however, to define all
of the tool interfaces found in UNIX, and it
does not define any accompanying utility
programs, user shells, and the sort of func
tions expected of UNIX distributions.

Comparing Ada plus the CAIS is equivalent
to comparing C plus a subset of UNIX
represented by its programmer-level system
calls.

Since UNIX is extensible and modifiable, it
would also be interesting to compare Ada
and C in a modified operating systems
environment which consisted of UNIX
features with CAIS functionality.

-231

Ada, C, and UNIX

2.3 Target Environments

As mentioned, Ada has facilities adequate
for a number of embedded target applica
tions, and needs additional supplemental
facilities for target systems which utilize
operating systems of the more traditional
variety.

C without UNIX has less system resource
control and systems-interface facilities than
does Ada; however, as mentioned, there is
little information on use of UNIX
compatible systems level interfaces in
embedded non-operating system-like targets.

A working group, the Ada Run Time
Environments Working Group (ARTEWG)
has been formed to address needs and solu
tions to the embedded use of Ada.

3. Language Comparisons, Ada and
C

This section compares the two languages,'
Ada and C, the perspectives of the issues
identified earlier. Then it attempts to come
up with observations on the current usc of
these languages for mission critical software.

It is fair to state, before examining these
issues, that each language has both merits
and domains of applicability to defense sys
tems. To summarize to the most abstract
level, Ada meets longer term requirements
for a language for programmillg ill the large,
for programming which is understandable
by larger crews of less sophisticated back
grounds, and for software which needs
sophisticated real-time concurrent multipro
gramming. With the same level of view, C is
a language of terse powerful expressiveness,
which was eagerly adopted by the nation's
university-level sophisticates as well as by
developers of commercial :t\1SDOS packages
like spreadsheet programs, and Dhase Ill,
because it allows them to express solutions
compactly, efficiently, and with minimal
isolation from the underlying hardware.
Current applications written in C arc very
efficient. C compilers are (from some but
not all sources) very mature and solid. But,
like the highly mathematical language, APL,
the religious fervor with which C sophisti
cates defend it belies the difficulties that
larger crowds of "less intellectual"

programmers have with coding produced by
the "UNIX Gurus".

It is probably relevant to comment that
many (but not all) writers of Ada coding are
expected to be prolific commenters (current
experience varies from 3: I comments to
code ratios to 1:10 on the light extreme).
Most C code from the UNIX operating sys
tem is sparsely commented; comments usu
ally note why the code author did some
thing, rather than what he did. Comparing
Ada and C may well be a comparison of
intellectualism (or, perhaps, elitism), versus
programming in the large. Military applica
tions span both spectrums.

3.1 Issues comparison

This section will compare C and Ada with
respect to the issues identified earlier.

3.1.1 Expensive and Lengthy System
De,'elopment and Evolution.

The long term and large size of military sys
tems often contributes to a large staffing
requirement, and a volatile (high turnover)
staff. Ada has several features which
specifically address this problem. These are
discussed as a solution to programming in
the large.

3.1.1.1 Staffing

In the past several years, UNIX has become
very popular at universities and colleges.
Software department managers report that
the large predominance of new-hires is
trained in C at the present time. Recent
availability of Ada compilers may
encourage further training of Ada in the
schools. It might be necessary to distribute
Ada to universities to ensure a large pool of
Ada-capable talent.

Many, however, report that C programs are
prone to be hard to understand. The style
of some programmers leads to extremely
compact code which is more intellectual
than straight-forward. In particular, UNIX
internal code itself is hard for less intellec
tual staff to comprehend.

3.1.1.2 Programming in the large

Programming in the large requires support
for a very large number of modules, by a
large staff. A one-million source lines

-232

Ada, C, and UNIX

project, if modularized into units no larger
than 50 lines each, consists of twenty
thousand different modules. Managing such
a collection of modules, and ensuring their
proper interoperation, is probably far more
difficult than designing, coding, and testing
the modules proper.

Ada is the first language designed to deal
with such large collections of program units.
It does this by separating data definitions
from procedural coding (common practice
but not enforced with C), and by having the
capability to verify that each called program
unit properly meshes with the caBer. It also
provides generic program units, which can
be instantiated to operate on a variety of
data types, to aid in reducing the number of
unique program elements.

The recently published C variant, C++, aug
ments traditional C with the same sorts of
functionality.

Many other features are required for pro
gramming in the large. These include ver
sion control, managerial support, analytical
tools, and the like. Such features can be
provided by programming host tools, either
using UNIX features, using user-installed
tools on a UNIX system, or using Ada
supportive tools on an Ada host.

3.1.1.3 Enforcing software quality

Ada, as a language, enforces strict rules
designed to minimize errant behavior of
program code. C, as a language, has signifi
cant expressive power which can easily be
misused (but, of course, that is avoidable).

Ada is a strongly typed language; fields of
specific types can only perform desired
operations with other fields. When so
defined, a base of a triangle can be specified
as .multipliable by the height, yielding an
area. But addition of an area with a height
would be disaBowed, and caught by the
compiler. Furthermore, when one subpro
gram caBs another, the language specifics
that data passed between the subprograms
muse mesh properly in terms of types and
variables. C also permits users to define
typing, but (except for the very newest C
compilers) does not enforce usage of this
practice. A companion program to C,
known as Lim, can be electively used to

check program purity. Because de Linting is
optional, many C users produce programs
which either avoid use of typing or fail to
adequately type everything.

Current C compilers do not check for type
mismatches and data mismatches between
separately compiled programs. Ada does.
A frequent cause of debugging difficulties
with C results from these types of
mismatches. (With the cited example of
20,000 modules in a large defense system,
this characteristic is significant.)

3.1.2 High Cost and Risk for Nontransport-
able Software.

Ada is designed specifically to result in
transportable software. Compilers must be
validated to provide identical results for a
standard test set; users are provided a high
confidence of Ada program portability.

C is known for producing programs whieh
have various degrees of difficulty in porting.
This often occurrs because C compiler limi
tations differ between targets and compilers.
Most frequent complaints about C portabil
ity centers on differences between proces
sors in pointer size, and pointer compatibil
ity with integer arithmetic. C programmers
tend to use sophisticated pointer manipula
tion (which Ada prevents). They also tend
to define bit fields and hardware dependen
cies which make programs nonportable. For
example, the many 68000 implementations
today differ significantly in their memory
management implcmcntations. A program
written for a virtual environment is unlikely
to run on a swapping environment, even if
both arc UNIX.

Problems which hinder the portability of C
programs often relate to UNIX system level
services, and differing implementations by
vendors. The concept of validation testing
of UNIX is only starting to be discussed.
With several variants (AT&T System V vs.
Berkeley, discussed later), major system ser
vices also differ.

The expressive freedom permitted C pro
grammers need not remain unbridled. Use
of C's companion, Lint, to check for pro
gram correctness, new tools to perform
intermodule typc checking, and enforce
ment of program style, should contribute to

-233
Ada, C, and UNIX

significantly more portable programs than
have been experienced in the past.

It is hard to blame the C language for the
woes of software written with dependencies
on Berkeley, AT&T, hardware, or other
features not present on all C implementa
tions. However, it is relevant to note that
tools and methods need to be provided to
alleviate the problem.

Similarly, it is hard to blame the language
for nonportable embedded systems code
(that which executes on targets without
traditional operating systems). There have
been no known standardization efforts for C
run time embedded environments (to com
pare with the ARTEWG, recently esta
blished for the same issues with Ada).

3.1.3 Technology insertion.

During the period of Ada (or C/UNIX)
employment on weapons systems, technol
ogy will change. Exactly how is unpredict
able; however, there are four attributes to
examine each language for, with respect to
resilience of both applications programs and
the language to technology insertion:

1. Sufficiency: docs each candidate
language have features sufficiently
abstract to remain meaningful and
powerful in the presence of new tech
nology.

2. Adaptability: are the semantics of the
language features extensible and/or
re-interpretable to encompass capabili
ties and changes caused by technology
evolution.

3. Extensibility: can the language
features be meaningfully and con
sistently extended to encompass new
technology.

4. Substitutability: can pieces/subsets of
the language easily be replaced with
newer technology pieces/subsets when
they become obsolescent, without des
troying the unity, harmony, or overall
balance of the language.

A comparison of Ada and C, more or less
for the above issues, follows:

• Ada is a rich and powerful language,
incorporating directly real-time

concurrency control features. Questions
have repeatedly arisen whether the
model chosen by Ada (the rendezvous
model) is sufficiently flexible to handle
the types of distributed processing capa
ble with federations of processors on
local area networks. The CAIS, for
example, had to define a new form of
concurrency basically the same as that
provided by UNIX. It is likely that Ada,
because it is such a complete language,
and complex undertaking, will need to
evolve more as technology advances,
than will C (because of its more simple
provisions).

• C is a compact language, providing pri
marily data manipulation functions, pro
gram control structures, and a simple
interprogram interface. In onc sense,
because the interprogram interface
features, concurrency features, and sys
tem level features are outside of the
language, C might be more resilient to
language change than Ada. On the other
hand, C developers may well adopt some
of Ada's features, such as interprocedure
type checking, restrictions on pointer
expressive freedom, and the like, in their
efforts to "tame" the language and
increase its suitability for large projects.

C's implicit reliance on operating system
features, for resource control, and
features such as concurrency, will hinder
transportability of programs as these
features change in underlying systems.
While C, the language, may be oblivious
to such changes, the C programs which
result will become as dependent on run
time particularities as ISA- dependent
programs now are on hardware. This, of
course, can be alleviated by standardiz
ing on such features, either through the
UNIX interfaces, or through CATS-like
interfaces for run time programs.

3.1.4 DoD \'ersus Voluntary Standards.

Ada standardization has been aggressively
pursued by the DoD, with the support of
the professional societies, trade associations,
and standards associations. C standardiza
tion has been only weakly pursued, with an
ANSI committee presently working on stan
dardization. Most non-UNIX C compilers

-234

Ada, C, and UNIX

(e.g., MSDOS versions) do not seem to
attempt to implement the complete
language. Furthermore, though the stan
dards effort is working on the original C
language, there arc implementations of a C
extension to support programming features
required for large and reliable programs
(C++).

3.1.5 Preserving competition.

There docs not seem to be much difference
between Ada and C, in regard to this issue.
A large number of vendors are implement
ing both languages. Six to seven vendors
have validated Ada compilers; at least that
many have competent full C implementa
tions. Initial concerns that Ada's complex
ity would limit the field of vendors seem to
have been ill-founded.

3.2 Current employment of Ada and C

3.2.1 Size and scope of projects

Ada has not yet been employed as a coding
language on many projects. The following
list shows projects and claimed lines of
source coding (project size).

• CCA: The AdaPLEX Data Base
Management System was done in Ada.
About 500,000 source lines.

• Digital Electronics and Arnold AFB:
Rocket and jet engine test cell sensor
control system planner/configurator.
150,000 uncommented (sic) Ada lines.

• General Electric: Said to be implement
ing an advanced Ada work station.
Several other Ada projects reported.

• Informatiqlle Illternationa!e (France):
Software development effort measure
ment / monitoring data collection pack
age. 7025 Ada source statements plus
811 comment lines (being expanded at
present, target 55% comment lines).

• Informatique Illternationa!e (Frallce):
Simulation package for queuing-type net
work analysis model. 3000 Ada state
ments in 12,000 Source lines.

• Illlellimac: reimplemented pre-existing
commercial programs into Ada.

• Illtellimac: AFATDS Data Base Manage
ment System, cst. size 50,000 source

lines.

• AlcDonnel Douglas: Test case of Ada
nown on aircraft.

• NfOOG: Servo control system, commer
cial. 4551 Ada statements in 12887 lines
of source code and commentary.

• Northrup: F20 Simulator translated from
Fortran to Ada.

• Northrup: F20 Operational Flight Pro
·gram translated from Jovial to Ada.

• Raytheon: Software requirements tracer
tool conversion from Fortran. 15,000
source lines.

• Rockwell Cedar Rapids: Beech Aircraft
Cockpit Display. About 15,000 lines
source code in Ada.

• Telelogic (Sweden): Telecommunications
autopolling system, for service center;
polls PABX'es for diagnostic readouts.
About 6500 source lines.

• Texas Instruments: Virtual Terminal
Package (AIM). 4800 Ada Statements
within 22000 lines of source coding.

C is relatively new to be used on military
projects. Some examples located are:

• General Electric: Said to have several
military systems being implemented in C.

• Litton Data Systems: LRIP (4 programs
for hand held portable military com
puter). Approximate size 45,000 source
lines in C.

• Litton Data Systems: LFATDS - US
Army Taefire rewritten in C for Z8000
based "briefcase"-sized portable com
puter. Approximate size 250,000 source
lines.

C has become very popular for commercial
projects. A number of widely known pro
jects are said to be either written in C or to
be converting major portions to C. These
include:

• UNIX: Well known portable operating
system from AT&T, enhancements from
UC Berkeley. K. Thompson (Bell Labs)
described an early Bell Labs UNIX ker
nel as 10,000 lines of C, plus 1000 lines
of assembler code. The assembler

-235
Ada, C, and UNIX

coding, he said, included 200 lines for
efficiency's sake, and 800 lines for
hardware control not (then) possible in
C.

The UNIX environment today includes
numerous tools, utilities, and products in
addition to the operating system kernel.
As a completely packaged environment
(including the kernel) it has grown from
about 100,000 lines of C (in original BeII
Labs versions) to' a recent count of
435,000 lines in the Berkeley release.

• Dbase III: Popular Database for Per
sonal Computers and some UNIX
machines.

• Kermit: Popular public domain commun
ications program for mainframes, mini's,
and micros. Available in portable C ver
sion. Includes numerous special provi
sions to ensure compatibility with the
various different UNIX versions (e.g.,
the communications support features of
Berkeley and AT&T UNIXes differ sig
nificantly).

4. Operating System Comparisons,
Ada and UNIX

Ada is, of course, not an operating system;
UNIX is [for disk and terminal based
environments]. The reason Ada is com
pared to C and UNIX is because Ada,
being a robust language, carries with the
language definition of services which in the
past were provided by operating systems
outside the definition of languages.

Operating System features found in Ada
which also exist in UNIX, as services
UNIX provides to C, include interfaces
between concurrently running cooperating
programs, input/output, resource control
(such as memory allocation), and utility
functions (such as mathematical routines).
Many of the UNIX services which are
available to C programs in the UNIX
environment do not exist with all C
language hosts; for example, on a Personal
Computer (e.g., IBM PC or clone) when
using Xenix (a UNIX implementation) to
compile C programs the programmer has the
full resources of UN IX at his disposal,
whereas when using MSDOS on the same

hardware, the C programmer is severely res
tricted with respect to concurrent program
ming (intrinsic in Ada and UNIX), data file
access and naming (intrinsic in UNIX and
CAIS, but not Ada or C), and some
resource management (intrinsic in UNIX
and Ada).

4.1 ALS and UNIX

The original ALS architects claim they were
influenced early by UNIX, and disap
pointed the Army chose VMS instead of
UNIX as their host system. (This choice
occurred 5 - 6 years ago, before the UNIX
ubandwagon" started rolling.) Several
presentations of ALS architecture have
been made to show UNIX influences. Of
course, the present ALS is a unique imple
mentation, and has long since diverged from
UNIX in its structure, style, and implemen
tation.

ALS adds to UNIX a library structure for
program development, which reflects more
modern practices than the UNIX equivalent
(Source Code Control System). The ALS
library structure, however, is less flexible
than the structure proposed by the CAIS.

4.2 CAIS Derivatives and UNIX

The CAIS designers (particularly the
KITIA members of the CAIS drafting
group) were heavily inOuenced by UNIX
architecture (both in terms of what they
liked and what they disliked with UNIX
architecture.) CAIS can be said to be a
filesystem representing up-to-date features
with a UNIX flavor. [I feel strongly that
the CAIS provides a model for a new
kernel-level filesystem to be implemented
inside UNIX.] Marriage of CAIS, within
the UNIX kernel, would provide an up to
date host for Ada development, and should
still be able to preserve compatibility with
current UNIX C tools.

4.3 Proliferations of UNIX(es)

There arc two UNIX uCamps", and a
number of UNIX uclones". There is also
strong indication that the incompatibilities
between these two are about to soon
become resolved. The mainstream UNIX
Camps arc:

-236

Ada, C, and UNIX

a. AT&T, presently marketing a version
of UNIX known as USystem V (five)".
AT&T provides four products:

1. UNIX source code, with licenses
allowing resellers to install and
sub-license to third parties,

ii. UNIX binary code, with licenses
for end users (where AT&T pro
vides the service of compiling,
debugging, and maintaining the
given system),

iii. A System V Interface Definition
(known as SVID), provided at no
cost as a standard for those wish
ing to build conforming UNIX
compatible operating systems
(clones), and

iv. A certification/validation ser
vice, provided as a testing ser
vice to evaluate an implementors
system to ensure that it behaves
according to the SVID.

b. Berkeley, presently providing for a
nominal fee source code for enhance
ments to an early AT&T UNIX ver
sion which was known as uversion 7".
These enhancements include a very
popular text editor, a mailing system,
and some other utilities which are also
now distributed by AT&T, and a ker
nel, a C-Shell (user interface command
language) and several other features
which are not distributed by AT&T.

The current Berkeley distribution,
known as 4.2, does not support some
of the AT&T System V software inter
faces. Conversely, many of the AT&T
System V compatible implementations
lack some of the Berkcley interfaces.
Since the incompatibilities are pri
marily in areas of interactive user ter
minal (CRt) control, they affect the
portability of many tools (e.g., editors,
windowing software). Both Berkeley
and AT&T representatives have stated
that the next release from Berkeley, to
be known as 4.3, will support the
AT&T System V interfaces. Assum
ing it occurs, it will be a positive step
forward to reduce tool-incompatibility
between UNIXes.

Arguments of whether Berkeley, with a
modified older version of UNIX, or AT&T,
with its current System V, are better, border
on religion. Berkeley is legally thwarted
from itself upgrading from v.7 to System V
by a AT&T licensing technicality which
would prevent Berkeley from giving source
code away to all takers unless Berkeley
itself also purchased source code licenses
for the many target machines. (Hopefully
release 4.3 will end this incompatibility.)

4.4 Issues comparison for Host Systems

\Ve should compare the use of Ada (without
a specific operating system, or simply with
the CAIS interfaces) to the use of UNIX for
host (disk based and terminal based) appli
cations. This comparison will revolve
around the same CODSIA issues previously
discussed. One issue we will not treat is
security. There is one implementation of a
usecure" UNIX kernel (Honeywell's
SCO!dP). There are efforts to ensure that
Ada-hosting operating systems (such as
those which might include CAIS interfaces)
also meet DoD security requirements.

4.4.1 Expensi\'e and Lengthy System
Development and Evolution.

UNIX has evolved from a personal working
environment to one suitable for larger pro
jects. Ada's suitability for development
work tool implementation depends on its
host. (There are several Ada implementa
tions on UNIX, and some of these can use
UNIX's other tools and facilities. There are
others based on other operating systems,
such as VMS, which (though not vendor
independent) do offer substantial facilities.

CAIS will provide Ada with certain ulow
levcl" tool interfaces which will aid in con
struction of tools (in the Ada language)
which are more independent of their hosting
operating system than possible at present.

4.4.1.1 Programming in the large

UNIX, per se, offers several configuration
management systems, electronic communi
cations systems, program dependency sys
tems, and similar tools needed in large
implementation staff environments.

Ada is presently dependent on (and specific
to) the underlying host system when used to

-237
Ada, C, and UNIX

implement tools for these environments.

4.4.1.2 Enforcing software quality

As tool bases mature, both Ada (on any
host) and UNIX should develop rieh bases
of tools for enforcement of software product
quality.

4.4.2 High Cost and Risk for Nontransport-
able Software.

UNIX hosted software is transportable to
other UNIX equipped hosts. Ada software
for the host environment is yet to be quanti
fied in its measure of portability; this
depends to a large degree whether a specific
program uses strictly the internal features of
the Ada language, the additional proposed
standard fcatures provided by the CAIS, or
additionally, the features specific to a given
host operating system.

Some UNIX software has been written in a
manner to make it version specific. Berke
ley and AT&T versions have diverged in
their forms of interactive terminal control,
and some kernel features, in recent years.
See "Proliferation of UNIX(es)". This can
lead to non transportability when not specifi
cally addressed at the time of software tool
implemcntation.

4.4.3 Technology insertion.

Thc UNIX operating system has been a
prime example of a program which has suc
eessfully undergone technology insertion.

• The kernel has evolved significantly,
from a single user minicomputer to
Berkeley and AT&T multiuser large
minicomputer implementations.

• The user utilities have changed sig"nifi
cantly in nature. For example, editors
have cvolved from line oriented editors
to syntax-directed and documentation
oriented products. Command inter
preters have evolved to have history and
advanced programming features. The
communications utilities provide net
working capabilities and Arpanet func
tions.

• Thc management functions now include
several sources of configuration manage
ment and project management systems.
Several vendors compete with

proprietary products for the DoD sup
portive marketplace.

Ada (alone) provides no equivalent operat
ing system facilities, so is not comparable to
UNIX with respect to this issue.

Both UNIX and CAIS provide low-level
operating system features. They are very
specific in terms of the file system (node)
and process models, and such are poten
tially vulnerable to changes in data storage
technology or distributed network software
concurrency solutions. There is little experi
ence to use in evaluating the resilience of
these low level features to technology inser
tion.

4.4.4 Presening competition.

The UNIX operating system is available
from a large number of independent ven
dors. Implcmentations fall into two
categories, those which are derived from
source code licensed from AT&T (e.g.,
Berkeley and Xenix), and those which are
implemented independently with UNIX
compatible interfaces (such as Coherent).
AT&T plans to offcr a
certification/validation service to test
interface-level compatibility.

Ada provides no equivalent operating sys
tem facilities, so is not comparable to UNIX
with respect to this issue.

4.5 Issues comparison for Target Systems

The lack of definition for Ada run-time
environment interfaces hampers a reason
able discussion of these topics. Ada can
only be considered as a language for sys
tems which require simple (textual)
input/output and system-specific other ser
vices.

The lack of definition for UNIX-compatible
interfaces for other than disk-based
terminal-supported systems hampers its dis
cussion for target systems. The use of
UNIX compatible interfaces for embedded
applieations (such as torpedoes or smart
land-mines), is as fraught with uneertainty
as a similar discussion would be for Ada.

-238-

Ada, C, and UNIX

4.5.1 Expensive and Lengthy S)'stem
Development and Evolution.

See preceding discussion.

4.5.2 High Cost and Risk for NOlltrallsport-
able Software.

See preceding discussion.

4.5.3 Technology insertion.

See preceding discussion.

4.5.4 Preserving competition.

See preceding discussion.

4.6 Positive features of UNIX

4.6.1 Robustness and completeness of tool
set

See 1.3.3

4.6.2 User extensibility

See 1.3.3

5. Recommendations for applying
Ada and ct

Until a set of stable and mature Ada com
pilers is available, and until academia uses
Ada as the basic language to train in, there
will be difficulties in applying Ada. (The
compiler situation, however, has become
dramatically better in the last half year. It
should be solved for good within the next
two years.)

Until C is augmented with facilities and
tools to enforce style, provide strong type
checking, and support programming-in-the
large (as claimed to be provided by C++), it
will remain difficult to complete large scale
military projects in C. \Vorse yet, post
development support for such large projects
will demand HUNIX Guru" intellectual
talent to be successful. The quantity of
those sorts of people who will work for
long-term projects, or the military, is severly
limited.

t These represent the author's current personal
opinion. They are likely to change as the many
factors cited change and as the products mature.

Thus there appears to be discrete tradeoff
criteria to use in comparing C and Ada for
military systems application.

5.1 Occasions to use Ada

Ada usage is indicated for large scale
developments, to be procured on traditional
long-lead schedules. \Vith the rapid matura
tion of Ada compilers, current problems
with compilers should be alleviated early in
the long traditional procurement cycles.
With the long cycles, personnel training can
be accommodated.

As mentioned earlier, Ada's features to sup
port large developments, and to support reli
ability and maintainability, arc important to
military operational software.

Ada's usage is also indicated, in the short
term, for developments where extreme relia
bility of the resultant software is important.

Ada should be emphasized for research type
projects, especially for the types of IR&D
efforts which will lead to products and pro
grams within the time frame for Ada com
pilers to mature.

5.1.1 Availability to schools

Many attribute the UNIX bandwagon to the
~~university give-away" AT&T practiced in
recent years. To significantly increase the
quantity of Ada training, a ucompiler give
away" (of a quality product) would be
recommendable.

5.2 Occasions to use C

C (with UNIX resource control and system
level services) would be recommendable for
several classes of applications:

a. Host system tools, where the host
already uses UNIX.

b. Target systems which need complete
disk-based operating systems (such as
hard-site command and control sys
tems); with the caveat that the size of
individual programs be small to
medium, but not large.

c. Target systems which are embedded
(no target operating system) and used
no target-level features from UNIX
(e.g., a smart land-mine with minimal
software/peripheral needs), for which

-239

Ada, C, and.UNIX

transportability and reusability con
cerns are less important than speed
of-deployment.

d. Target systems to be implemented
rapidly in the short term, where use of
UNIX and C would reduce risk, even
at the expense of post development
support t or UNIX change risk later
on. A crash-effort weapons system
might fall into this category. The large
pool of C capable talent and the
robustness of the current UNIX hosts
arc strong points in favor of such
needs.

Usage of C will be more recommendable for
a larger class of military systems when the
C++ dialect becomes more widely available
and supported.

5.2.1 Controlling intellectualism in C style

This should be possible through the usc of
software engineering methodologies and
management which limits the practice.

5.2.2 Providing facilities for programming-
in-the-large

This should be possible by defining tools
and supplemental language features to sup
port inter-module type checking, and other
features described earlier. Newer C dialects
(with tools to restrict excessive freedom to
avoid safe programming) will also be help
ful.

5.2.3 Determining which UNIX l'ersion to
use (BSD l'S AT&T)

Many tools are dependent on eithcr BSD or
AT&T interfaces. While there is a high pro
bability that BSD eventua1Jy will adopt
AT&T interfaces, in the ncar term users
will have to contend with incompatibilities.

Current Ada products which are UNIX
hosted (Verdix's Ada compiler) are BSD
dependent. DEC has also adopted the BSD
interfaces for its versions of UNIX (Ultrix).
However, many defense contractors have
adopted AT&T versions (General Electric
Corp.,IBM Corp., Litton Industrics). Furth
ermore, there is a trcnd towards providing
kernels which are AT&T derived (for more
modern kernel and driver implementations)
yet exhibit both styles of interfaces.

Microsoft (with Xenix) has been successful
in that direction and there are indications
that the next Berkeley release will do like
wise..

Some UNIX-hosted tools have attempted to
maintain compatibility with both AT&T
and BSD UNIX. C-Kermit is a notable
example. The effort which went into insert
ing that compatibility has practically
exceeded the original design and coding
effort. To guarantee that future tools are
compatible with both is costly, and requires
on-site "UNIX Guru" talent. To restrict
oneself to the common subset of both is not
possible in the area of interactive terminal
and screen support.

This dilemma might be resolved in the very
near term. Pressure on Berkeley might get
them to implement Xenix-like support of
both forms of terminal driver interfaces
(that is the most incompatible area of con
flict). Pressure on AT&T might be similarly
rewarded.

6. Rcconnnendations for applying
CAIS and UNIX

Recommendations in the operating system
and software environment domain need to
consider the category of use: host or target.
The next two sections provide some recom
mendations.

6.1 Host Enl'irollments

A clear trend in industry is to favor host
environments which are supported by multi
ple vendors. While many of the current
validated Ada products run on proprietary
(single-vendor) operating systems (such as
VMS or ADS), and while many of the
proprietary operating systems have signifi
cant technical merits, their adoption would
leave the DoD still in the position of being
dependent on one vendor.

There seems to be evidence that it is diffi
cult to write host system utilities and com
piling systems which are truly operating sys
tem independent. Two attempts to produce
such tools (where portability to entirely dif
ferent operating systems was expected) have
not met success:

-240
Ada, C, and UNIX

• Examination of the Army ALS, an
environment said to be designed to be
rehosted, shows that it is heavily depen
dent on host operating system features,
and indeed even on a unique language
(Bliss) only provided by one vendor.

• The Kermit project attempted to pro
duce a host program in a widely avail
able language (C with UNIX interfaces).
A significant portion of thc program is
nonportable (to non-UNIX C hosts) to
other operating systems (even where
they do support C).

UNIX offers a way to write host tools and
software, where the same operating system
is available from numerous vendors on
many classes of hardware. For the near
term, it offers a solution to the problem of
host tool portability.

6.1.1 CAIS Interfaces

The CAIS promises to standardize on the
lower level host service interfaces. CAIS
should bring to Ada a similar degree of por
tability as UNIX affords to C. At present,
however, draft versions of CA IS arc subject
to technical controversy and need to be pro
totyped and necd to have time to mature.

6.1.2 Berkeley \'ersus AT&T Interfaces

See 5.2.3.

6.2 Run-Time Environments

The extreme lack of standards and direc
tions in run time environment interfaces
makes this a Pandora's Box of confusing
choices.

6.2.1 Presenillg kernel-level UNIX compa-
tibility

Where UNIX is used as a host development
system, it would seem beneficial to usc
UNIX-styled interfaces in target environ
ment kernels. Some technical controversy
exists as to the optimality of such an
approach. However, it does make the job of
software testing, on hosts, and installation,
to targets, go smoother. No standards or
directions have been established in this
area.

6.2.2 Using Actual UNIX kernels For Run
Time Environments

UNIX kernels (and operating systems) can
be used as is for some target systems, partic
ularly to fill the need to field computers
with disks (magnetic or optical) and large
scratch memory (disk, bubble, or ram), and
interactive terminals for operator control.
Progress with multilevel security implemen
tations of UNIX is encouraging, particularly
for such environments.

For strictly embedded systems, which do
not have host-like peripheral complements,
while some UNIX code might be applica
ble, most observers doubt that the actual
UNIX kernel will apply. Research and
development of limited-resource run-time
executives will need to be conducted to pro
vide data for decisions on this area.

6.2.3 Adding concurrency models to UNIX-
style environments

UNIX kernels support a form of con
currency designed for centralized comput
ers with time sharing users. Current direc
tions in both host and target systems is to
use federations of processors, either as host
workstations, or in targets, for functional
decomposition of a system. Approaches to
using the UNIX process model in these
environments need to be evaluated for mili
tary application. There remains a likelihood
that new forms of loosely-coupled multipro
cessing communication will eventually result
in changes to the underlying models in sys
tems like UNIX.

6.2.4 CAIS interfaces for Run Time usage

The use of CA IS, as a set of low level ker
nel interfaces, in target systems is subject to
almost the same arguments as is the use of
low level UNIX interfaces. These issues
will not be reevaluated here.

The Ada Run Time Environments Working
Group is evaluating low level interface
needs of Ada programs. Their progress will
have to be closely monitored to assess vari
ous alternatives which might result from
their efforts.

Revision Control Tools and the Ada Program Library

Dick Schefstrom
TeleLOGIC AB,
Regnbagsallen 4

S-951 87 Lulea, Sweden

ABSTRACT

Undertaking the transition to Ada today will to most of us not mean using a full APSE, [DOD80,
BUX80j, tailored for this purpose. Instead, this transition must be made by using an existing en
vironment, stepwisely integrating its proven tools and concepts in the realm of Ada.

This paper describes one effort taking this approach, where the Unix revl5ion control tool RCS,
[TIC85l, is integrated with an Ada program library, using a U:'JIX style library interface.

1. Introduction

Already at the beginning of the Ada project, the importance of the programming environ
ment was pointed out, and a number of ambitious projects and investigations were initiated,
[00181, THA82, INT82, KIT84j. However, today few APSE's of this spirit are available for pro
duction use, and even if they were, existing environments could be chosen for a number of rea
sons: since they are proven and people know how to use them, something that should not be
ignored when planning for an introduction of Ada,

It can therefore be argued, [ICH85J, that we, at least for the moment, should take a
bottom-up approach to tools and environments, and spend the efforts on careful integration
between existing operating systems and the Ada-world. To make it convenient to use Ada in an
existing environments, the interfacing to the Ada utilities should be carried out in the spirit of
the host environment, and its tools should be reused in the Ada context whenever possible.

The arcs program, described here, is an example of an attempt to do this for the UNIX
programming environment.

2. Revision Control in an Ada Environment

Revision and configuration management was given a very important role in the require
ments of the APSE, [00080J, and has consequently been given much thought in different
APSE-efforts. Still there are tools, such as RCS, wid~ly in use for such purposes today, which
could be reused very neatly in the context of Ada if suitable measures are taken.

The Ada program library is very important to notice in this case, since it will always be
there, (in one form or another): describing the user's world of Ada units, and their relationships
to each other. It is likely that these program libraries will be a main focus of interest, just like
file directories are today. Examples of such program libraries are [ODe8.tl, lDEC84], [N..t\R85].
But, in parallell, ~sers will still want to keep track of successive revisions of source codes, based
on files, using tools like RCS, [TIG85;, SCCS, [ROC75], or eMS, [DEC82].

If these two tools, the program library and the revision control tool, don't know about
each other, we will experience a number of questions ...

* Which revisions/versions of a program unit are actually present in the program library?

* \Vhat is the name of a unit: the Ada unit. name as present in the library or the filename as
when dealing with RCS?

* For a particular unit in the program library: where is its "RCS-file"? Is the unit under
revision control or not? Has its source code been checked in since it was last modified?

*

-242-

How do we interpret concepts defined in the context of program libraries when using RCS,
and vice versa. For example, can we check in a configuration? Check it out?

The problem is really that we will have two uncoordinated representations of the same
thing: the program; leading to unwanted redundancy and confusion.

Typical revision control tools, such as RCS, are good at keeping successive revisions of a
single file together. However, they are not that good at describing system structure and relation
ships between different units. On the other hand, an Ada program library always explicitly
represent relationships between separately compiled units and catch more of the semantics
about what is being stored, but usually has no tracking of successive revisions. So, by combin
ing the two we can get the best out of both tools.

3. The Program Library

The work described here is the initial results of an attempt to integrate the UNIX revision
control tool RCS with the TeleSoft Ada program Library, [NAR85a], [NAR85bj, [SCH85a],
[SCH85bl. To give the necessary background, a short discussion of the properties of the program
library is appropriate. For a more detailed investigation see the references given above.

The full typechecking between separately compiled units, as required by the Ada language,
implies a close interaction between the compiler and the environment. It leads to the introduc
tion of a file, or "database", holding the descriptions of which units have been compiled earlier,
what services they provide, and how they relate to each other. Although each compilation must
be performed in the context of a program library, the Ada language definition does not prescribe
its functioning in any detail, but regard it as part of the environment. At this point we also get
implications for "programming-in-the-large" and software engineering, and interesting criticism
has been presented on this subject by some researchers, [BUX85j.

Since a lot of information about the software is automatically collected in the program
library, in a form suitable for mechanic manipulation, there is a big potential of building new
tools utilizing that information. Among the more obvious is an alternative, or substitute, for
Unix/Make, [FEL 79), system structure, or cross-reference, -generators, and configuration and
version management tools. In another paper, [NAR85a], the author argues that the "environ
ment database" envisioned by the original APSE requirements, is best approached as an out
growth of the program library.

The implementation of an Ada program library we have used here, the TeleSoft Ada pro
gram library, is composed out of a freely constructable sequence of sublibraries, together consti
tuting a full library. Each sublibrary implements a datamodel describing a directed graph
where the edges are typed and the nodes may have arbitrary attributes. Besides being nodes in
a typed directed graph, the nodes are, within a sub library , arranged in a hierarchy.

The system is open-ended in the sense that new nodes, edges, types of edges, and attri
butes, may be introduced dynamically. Further, procedures to do this are available as Ada
package specifications, making it possible for different organizations to tailor their own bridges
between the world of Ada and their existing environments. We believe that such open-endedness
is very important for a smooth transition to Ada.

As an example, a package specification for a package "pack_a" is represented by a node
with the same name. To distinguish the specification from its body, (which in Ada has the same
name, but is a different compilation unit), it is the child of a special node called "lib'· ...

-243-

status =
released

source f He =
aspec:-text

To fully name a node, one must specify its path, so the unit above. would be called
"/lib/pack_a". The rectangular boxes attached to the node represent attributes, which may
arbitrarily be attached to any node. The text inside the attribute symbols always has the for·
mat <attr_name>=<attr_value>.

A small system can then be illustrated...

...where the nodes represent compilation units, and the arcs represent relationships between
them. The different labels of the arcs could be viewed as a typing, or categorization, of the
corresponding relationships. Different tools, (most frequently the compiler), introduce different
types of edges between nodes.

It is a main point that different programming·in·the.large concepts, like consistency levels,
configurations, and releases, can be defined in terms of the datamodel used, [NAR85a]: and this
is explored in the integration with ReS which is to be described in the following.

Edges may also span between sublibraries, so that what we get could be viewed as a "lay.
ered graph". Different layers, (sublibraries), could then be used to hold different subsystems, ver·
sions, or act as a mean for sharing of objects between many programmers, [NAR85aJ. However,
in the examples used in the following we do not explore these properties: to simplify, and since
the ideas presented should be clear anyway.

-244-

4. Basic Concepts of Arcs

A program library may contain lots of attributes and many different types of edges
between nodes. At any single moment, a user is probably not interested in all of of that, but
rather a subset of the information important for the task at hand: there is a need for an ability
to define views.

In arcs, the basic library listing command, ("I"), takes a list of attribute names, (each sig
nalled by an initial Hip, "'''), a list of edge type-names, (each signalled by an initial colon, ":"),
and a list of node, (or unit-), names. The given attributes are listed, if present, for each unit
reachable by starting at a given unit following edges of any given type, as far as possible. Such
a reachable graph may be given to each command of arcs, with the effect of repeating the com
mand for each node in the resulting graph.

The command...

I 'time_stamp 'unit_kind :body /lib/

...would therefore list the values of the attributes "time_stamp" and "unit_kind" for all library
units, (the ending "I" generates a list of all child units), and for each of these, all units reach
able along edges of kind "body". This happens in this case to result in graphs of exactly two
units, each containing a specification and its body.

Another example: the command...

1 'state :imports :body :parent :subunit /lib/main

...would list all units needed for the execution of "/lib/main", and for each such unit, the value
of its "state" attribute. (Each listing also points out units beeing out-of-date, or beeing missing
completely, so that the command can also work as a consistency check).

This facility acts as a basic mechanism for specifying views: the user has complete freedom
to operate on, or see, arbitrary subset of the program library contents. To make it convenient
to use such views, the alias facility may be used: instead of explicitly giving every attribute and
edge type-name, the user could issue the command...

alias my_view 'state :imports :body :parent :subunit

...reducing the previous command to ...

I my_view /lib/main

Arbitrary many aliases may be defined, and each may represent a different view of the
program library. Arcs also has a large number of "variables" which can be set to customize its
behaviour. If we don't want to specify the prefix "/lib/" each time, (to tell that it is the spec of
main that is meant), we could set a variable ...

set default_prefix = llib/

... reducing the command to...

I my_view main

'Ne could simplify even further by doing ...

set default_unit = /lib/main

...reducing oIJr example command to ...

-245-

If we'd like to inspect, or edit, the source texts corresponding to some compilation units,
the commands "see" and "edit" can be used, respectively. The tools to be used by these com
mands is specified by setting variables, and the setting...

set editor = /usr/local/bin/emacs
set seer = /usr/ucb/more

...would cause "emacs" to be used by the "edit" command, and "more" to be used by "see". The
command...

edit :body /lib/main

...would cause emacs to start up with two windows: one for the spec and one for tl-.~ body.

Arcs contains lots of commands, and for each command there may be many options and
variables affecting its detailed functioning. Presenting them all here is not possible, although
some of the spirit should be clear from the examples above. Arbitrary "arcs"-commands, such as
alias definitions, settings of variables, and opening of a default library, may be put in a
".arcsrc·· file, so that these commands are automatically performed at each invocation of "arcs".

5. Coordinating with the Revision Control Tool

When we successfully compile a unit, a node with the same name as that unit, and some
associated attributes, is created, (or updated), in the program library. As an example, if we
have the source of a package spec called "pack_a" located in a file "pack_a_spec", the following
would be created ...

That is, we now have a "lib"-node called "pack_a", which has an attribute "source_file"
describing which file the source is located in. Typically, the user is not satisfied with "pack_a"
just because it was compiled without errors, so he will repeatedly edit and compile the file
"pack_a_spec". However, at some point in time he feels that the current state of "pack_a" spec
is something of a milestone, and should be put under more Cormal control.

So, the units in a program library are of two kinds...

(1) Milestones, which are revisions considered important and complete, and whose source
has been stored using a tool like ReS.

-246-

(2) Editions, which are in a state of development and whose source is not saved: it is just
changed to arrive at a new edition or milestone.

Working under UNIX, RCS, (or SeeS), would now be used, "checking in" the file
"pack_a_spec" ...

...resulting in a new revision, stored in an "rcs-file" called "pack_a_spec,v". However, this is nor
mally not reflected in the program library.

If the program library is to be a central information storage, activities like checking in
and checking out must be made to affect it, in a more or less automatic way. To achieve this all
the commands of RCS can be given from within "arcs", which let us talk about software in
terms of the compilation units and configurations of the program library, and also makes it pos
sible to reflect in the program library what revision control actions have been performed. These
commands take the usual rcs-parameter fiags as a subset, (prefixed by"."), but does also take
" " 'fi fi (fi db" ")arcs -spec1 c ags, pre xe y + .

A check in of the current version of pack_a's spec would now look like...

The program then looks in the current program library for a unit "/lib/pack_a", takes
the file described by the "source_file" attribute and checks it in to an RCS-file.

To register that what is now in the library is a unit under revision control, a "version_nr"
attribute is associated with pack_a, resulting in the following in the program library...

version nr =:

, 1.1-

state =:

milestone

50crce file :;:
~ck_a_spec

\Ve can now see from the attribute "version_nr" that the unit is under revision control and
what version number it has. The "state" attribute tells us that it is the "real 1.1", and not an
edition of it. A subsequent compilation of pack_a changes the state to "edition"...

-247-

version nr ::::
1.1 -

state :;:
edition

source file ::::
paek_a:spec

As a way of increasing reliability, the check-in program also checks that the source file has not
been changed since it was compiled into the program library, and issues a warning if necessary.

So, by putting some other software around the check-in program we can, in the program
library, maintain an explicit distinction between the different states of compilation units, and
get a more homogeneous environment with the program library as a main entry into different
services.

As discussed earlier, we allow different versions of the same unit to coexist in the environ
ment if they belong to different sublibraries. This makes it possible to make full use of both ver
sions without checking in or out, and without any need for recompilations when using another
version. However, although these versions can be treated as independent units, there are good
reasons Cor letting them share a single "res-file"...

(1) We get a description of how the different versions relate to each other historically.

(2) The sources can be stored space-efficiently.

The question that now arises is: how do we locate that common "res-file"? As a general
rule, a system should not force a user to any particular methodology but should provide con
venient defaults. In the case of res-files this implies that the user is allowed to provide the name
of the directory where the res-file is to be located. A typical check-in would then look like...

That is, the user tells the system that the source of the library unit pack_a is to be
checked in at the directory /uO/proj_a/rev. This is also registered in the program library,
resulting in the following ...

version nr ::::
1.1-

state =
milestone"

res....cUr =
/uO/proj_a/rev

-248-

Once a unit has been assigned arcs-directory, the check-in program looks in the program
library for the name of the res-file during subsequent check-in's, providing a natural default. So,
the user has to decide on the location of the res-file only at the creation of the first revision of a
unit.

Some information in the program library is now in the form of file names, referring to files
in the host file system. To enable the tools to act "intelligently", one must agree on an interpre
tation of these file names.

Filenames can be of two kinds, absolute or relative. Absolute filenames are no problem:
they can be interpreted in only one way, but may on the other hand sometimes generate prob
lems since moving of files becomes harder. Relative filenames make it easier to move files
between directories, but require some rule for translating a relative filename into an absolute.

The usual way of using the current directory does not always work in the context of subli
braries, since a sublibrary may be on the same directory during a long time, while the users
change their current directories while still using that same sublibrary. To make up for this, the
library tools treat relative filenames as relative to the directory of the sublibrary where the
names are stored.

Using this idea, the res-file is located on the same directory as the sublibrary of the compi
lation unit, if not explicitly provided.

To automatically repeat the check in operation for a whole set of units, "reachable
graphs" can be used. For example, a complete executable Ada program is defined by starting at
the "main" unit and following arcs of type "imports", "body", "parent", and "subunit". Using this
in the check in command...

ci :imports :body :parent :subunit /lib/main

...would repeat the check in for each unit in this reachable graph which "need to be checked
in". A unit is said to need to be checked in if it has been compiled since the last check in, (state
= edition).

Of course, the long list of relation names may be replaced by an alias...

alias :p :imports :body :parent :subunit

...reducing the command to

ci :p /lib/main

If different flags need to be given for each unit in a reachable graph, the "+a" flag will
cause "arcs" prompt the user at each unit, giving an opportunity to supply different parame
ters, or to skip the node alltogether.

The check-out command works in a similar way. It can be used for single units by giving
the name of a compilation unit as in the command...

co -r2.1 /sec/pack_a

...which would try to localize the res-file of the body of "pack_a" and check out revision 2.1 into
the current directory. (A .. +d" parameter would have caused check out to the directory of the
sublibrary, analogous to check in). As in the case with check-in, configurations can be dealt
with by giving a reachable graph:

co :p /lib/main

-249-

...would check out, for each unit in the given reachable graph, the latest version on the trunk.

A reachable graph can be thought of as a configuration, where each unit is of a particular
version, (as described by the "version_nr" attribute). To be able to, for each unit in a reachable
graph, check out the source corresponding to that particular version, the special sign '&' may be
used instead of revision numbers in the res-flags. Arcs will then, for each unit, substitute the '&'
with the value of that units "version_nr" attribute. The command ...

co -1& :p /lib/main

...would therefore check out these sources to the current directory. As previous, the" +a" flag
will give the user a chance to provide different flags for each unit. As another example, the com
mand...

co -1& +d- 2/lib/ 2/sec/

...would check out, to the directory described by the variable "tilde", (which defines what is
substituted for '-'), the sources corresponding to current revisions of all library and secondary
units in the second sublibrary in the library list. Of course, instead of "-1&", any of the rcs ways
of identifying a revision, (for example symbolic), can be used.

6. Automatic recompilation

As is shown in [NAR85aj, the order of the necessary recompilations after a change are
very easily computed using the high-level graph-manipulation operations provided by the
TeleSoft Ada program library.

However, if the compiler only can compile whole files, the compilation of a unit must be
done by compiling the whole file it is located in, possibly generating side-effects because of other
units in that same file. It can be argued that the user should not put several units in the same
file, if he expects things to work smoothly, but this is in reality a too hard restriction: although
the "file" is not suitable as the unit of compilation, it may be a suitable unit of editing, since
there may still be users out there having small screens and single window editors.

Instead we made the compiler take not only a file and a library as a parameter, but also a
list of unit-names. In the following example ...

ada -u/sec/pack_a pack_a.text

...both the spec and body of "pack_a" are located in the file "pack_a.text", but because of the
"-u" parameter, all units in the given file, except the body of "pack_a", are skipped by the com
piler.

At any moment the program library contains zero or more units from the same "revision
family", (units whose source is stored on the same res-file), and these "representants" act as
entries into that revision-family. If some member of a revision family is present in a library, we
say that the family is "represented" in that library. If one wants to compile into the library
another member of a represented revision family, it can be done by using the "ada" command...

ada -r2.3 /sec/database

...which, in the example above, would check out revision 2.3 of "/sec/database" and try to com
pile it into the library. Sometimes this doesn't work, however, since the desired revision maybe
"withs" other versions, or other units, than are present in the library. \Vhere the "ada" com
mand fails, the "tH" comma.nd can be llsed instc3.d ...

-250-

tli -r2.3 /sec/database

...resulting not in a full compilation, but making the relationships of "2.3" to its environment
visible in the library. This gives a convenient way of observing the separate compilation struc
ture of "2.3", thereby pointing out what kind of environment is needed to perform a full compi
lation. Finally, the "make" command is used to automatically carry out the necessary recompi
lations after a change in one or more units of a system. As an example, the command...

make +c /sec/database

...would recompile /sec/database, (if needed), and before that, all the units needed before
/sec/database could be compiled. Instead of giving the "+c" flag, which tells make to do the
necessary work before the given unit can be compiled. We could also have given the" +e" flag,
causing all the compilations necessary to make the unit executable.

7. Conclusion

During the beginning of the Ada project, there was a lot of emphasis put on the "APSE",
the advanced programming support environment, which should accompany the pure language
implementation. This APSE was often thought of as something to a large extent built from
scratch, using new paradigms, and including new advanced tools.

What is described in this paper is an example of a more incremental/evolutionary
approach, where an existing, proven successful, tool, is taken advantage of, stepwisely including
it into an Ada programming environment building on the UNIX system.

8. Acknowledgements

Nlikael Beckman and Johnny vViden at the TeleLOGIC Lulea office made both conceptual
contributions and carried out large parts of the implementation.

9. References

[BUX85]
"Ada: The Language and its Environment", J.Buxton & D.A.Fischer, in Technology and
Science of Informatics - Ada Special, North Oxford Academic, 1985.

[DDC84]
"DOC Ada Compiler System Separate Compilation Handler, Functional Specification",
Dansk Datamatik Center, Nov 1984.

[DEC82]
"C~lS/MMS: Code/Module Management System Manual", Digital Equipment Corporation,
1982.

[DEC84]
"YAX Ada Technical Summary", Digital Equipment Corporation, Nov 1984.

(D0181]
"enited Kingdom Ada Study: Final Technical Rep()rt", Department of Industry. London
1981.

-251-

[FEL79]
"Make - A Program for Maintaining Computer Programs", S.Feldman, Software Practice
& Experience, April 1979.

[ICH85j
"Ada: Ready For Application", an interview with J.Ichbiah, published in Technology and
Science of Informatics, Ada Special, North Oxford Academic 1985.

[INT82]
"Computer Program Development Specification for Ada Integrated Environment", Inter
metrics, Inc. Cambridge, IvIA, 1982.

[KIT84]
Common Apse Interface Set, (CAIS)", proposed military standard, v1.4, Ada Joint Pro
gram Office, 1984.

[NAR85a]
"Extending the Scope of the Program Library", K-H Narfelt & D. Schefstrom, in "Ada in
Use: Proceedings of the 1985 International Ada Conference", Cambridge University Press
1985.

[NAR85b]
"System Development Environments", K-H Narfelt, Licentiate Thesis, Department of Com
puter Science, Univ of Lulea, 951 87 Lulea, Sweden. 1985.

[ROC75]
"The Source Code Control System", Marc J. Rochkind, IEEE Transactions on Software
Engineering, Nov 1975.

[SCH85a]
"Possibilities of Layered Graphs", D.Schefstrom, Memorandum, Dep of Computer Science,
University of Lulea, 951 87 Lutea, Sweden. 1985.

[SCH85b]
On Data Organization in Programming Environments", D.Schefstrom, Licentiate Thesis,
Dep of Computer Science, University of Lulea, 951 87 Lulea, Sweden. 1985.

(THA82]
"The KAPSE for the Ada Language System", R.M.Thall, ACM/AdaTEC Conference 1982.

[TIe85)
"RCS - A System for Version Control", W.F. Tichy, Software - Practice & Experience, Vol
15(7), July 1985.

Managing Separate Compilation in AT&T's Uf'IXT:\1 Ada'JP System

G. W. Elsesser
M. S. Safran

T. Tieger

AT&T Information Systems
Summit, New Jersey 07901

AT&T's u~nx Ada System is a rehostable and retargetable compiler. library manager, and
runtime system for the Ada programming language, It is currently hosted and targeted on
the AT&T 3B2-~OO running U~IX System V Release 3, The system's Ada Library Manager
(ALM) enforces the Ada LRM[1] compilation order rules. supports the use of compilation
units from multiple libraries. and provides an interface for building and maintaining Ada
program libraries. It also provides the basis for other closely related tools including a
program build facility and a set of administrati\"e tools. The U:'-IIX operating system sen'es
as our Kernel Ada Programming Support En\'ironment (KAPSE), The U~IX Ada System
exploits existing U~IX System features to pro\"ide the en\'ironment facilities imposed by the
Ada language requirements. The AL:\[tools. operating in the U~IX Ada environment. can
be viewed as a ~1inimal Ada Programming Support Environment (MAPSE).

1. Introduction

When presented with the task of designing a library manager. we were not quite sure about
what its scope should be. \Ve knew that it needed to manage separate compilation of Ada
programs and that it would have to define an implementation of one or more program
libraries as specified by the LRM. But how deeply should we delve into environment issues?
How comprehensive a database should \\'e provide? Should we rely on using U~IX

pathnames for identifying libraries? How much of the U~IX operating system should be
hidden from the Ada programmer? Should any protection at all be provided? Were the
existing U:"iIX configuration management tools sufficient or desirable for Ada? (Do we or
do we not use make[2])? \\'hat specific administrative tools should we provide? In short.
how much of an APSE did we actually need to develop?

This paper describes the existing Ada Library Manager (AL~1) implementation - its
database and its software. In the process of presenting its features. we highlight some of the
design choices that were made and suggest areas for future work.

2. Overview of the V~X Ada S~'stem

When a system administrator installs the U~IX System. the ALM database is configured.
One or more library indexes are produced. A library index manages a family of Ada program
libraries. Each library is a U~IX directory containing a special file. called the
DICTIO~ARY. that keeps track of information about compilation units. Ada source files.
symbol tables. object files. and sees files typically reside within this directory or among its
subdirectories. Ada programs are compiled inside a particular library - the sole place
where compilation information may be updated. Compilation units may be imported from
other libraries within the same index. Accessible foreign libraries are those directories for
which the user has read permission.

7M L-='IX :) a trademark of AT&T Bej Laboratorie)

.. Ada is a registered trademark of the L'. S, Government-Ada Joint Program Office

-253-

The ALM software is depicted in a block diagram in Figure 1. As can be seen~ the choice
was made to use a small set of U~IIX commands. The ada command~ like the familiar cc
command, compiles and links source files into an executable. Compilation completes
successfully if and only if all the units on which the specified program depends have already
been compiled and stored in the library. Command-line options not recognized by ada are
passed directly to adalink and on to /d if necessary. (Care was taken to use familiar option
names when possible.) The adamake command provides a mechanism for program building.
Like the U~IX make command. it determines which units need to be recompiled in order to
produce a desired target. Like various makefile generators, adamake examines source files to
determine predecessor information. It is able to provide the functionality of both make and a
makefile generator by using a phase of the compiler to scan the source. Both the ada and
adamake commands use a common subset of AL~[primitives. The administrative facility is
provided by the aIm command. Since it was believed that the optimum set of functions for
this utility would best be determined by users. an early decision was made to design this
command so that it could grow gracefully.

\Ve now discuss each of these in greater detail.

3. Program Libraries and Separate Compilation

The LRM[l] specifies that "The compilation units of a program are said to belong to a
program library... The possible existence of different program libraries ... are concerns of
the programming environment." Should an installation have one or more libraries? If there
are many libraries. how do we provide shared access to popular packages? Did we have to
resort to copying foreign units? \Ve decided that it was totally impractical to require that all
Ada compilations in an installation take place within one library. The U~IX file system's
permissions mechanism seemed to be a natural model for providing shared access. This
section describes the structure of our libraries and the strategies used to provide consistent
access to foreign units.

3.1 The ALM Database

With the decision to allow multiple libraries came the question of how to identify particular
ones. When compilation units import other units. how can one tell at a glance where they
came from? We decided to create a pragma called LIBRARY to pair an import with its
location. The U~IX file naming facility offers a way of uniquely identifying libraries.
However, embedding hard coded pathnames in source programs did not seem desirable. For
example, a user might \,,,'ant to include a package called ~1ATH_PAK from a mathematics
library. It would be convenient if that library could be called ~lATH_LIB and if it wouldn't
matter where exactly in the file system ~1ATH_LIB was located. We therefore came up
with the notion of a library alias. The mapping between an alias and the U~IX pathname.
as well as with a small. fixed size internal identifier, is implemented in the library index.

The ALM is essentially a database for information about compilation units. \Vithin a
particular library. the database is represented in one binary file (called the DICTIO;..JARY
for historical reasons). ~ot using an ascii representation optimizes performance as well as
space; startup time is shortened. and references to names can be stored as pointers. Fixed
size hash tables are provided for quick access to information about compilation units and
source files. to keep track of names. and to avoid storing duplicate copies. The remainder of
the DICTIO~ARY is an extensible heap where lists and strings are stored. The heap is
managed by a first fit boundary tag algorithm as described by Knuth[3].

Vle decided to have a uniform access method for referring to DICTIO~ARY objects from
both the current and imported libraries. Having the current library be memory resident \vas
entirely feasible because of U;..JIX System V Release 3's paging mechanism. Relying on
complete dictionaries for all the imports to also be in memory did not seem reasonable. So
we decided to view a DICTIO~ARY's address space as an abstract data type. Virtual

-254-

addresses are provided for all objects. When a higher level routine requests access, it
provides an internal library identifier and virtual address to lower level primitives. These
primitives hide any representation differences between objects in the home library and those
in foreign libraries. They decide whether to return a pointer to a memory location or to use
lseek to find and fetch an object from a foreign library's DICTIO:"lARY.

The data stored in dictionaries can be viewed as a dependence graph. Various traversals
provide the following ser"'ices for the ada compiler and linker:

• A check for whether the Ada compilation order constraints are satisfied for a given
compilation unit.

• A topologically ordered list of the names and locations of the symbol tables of all units
(in the current and/or foreign libraries) that are needed to complete the compilation of
the current unit.

• Cycle detection. based on the three color marking algorithm used by the Ada Breadboard
linker[4].

• A list of compilation units in an acceptable elaboration order.

3.2 Concurrent)· Control

Each read or update to the AL~1 database is considered a transaction. Like any other
database system in a multi-user environment. the ALM must regulate database access to
guarantee that transactions are carried out in a legitimate order. Some of the factors that
affected our choice of a concurrency control method were:

• The cost of back tracking; Le. undoing compilations.

• The granularity of read and update transactions.

• The desire to allow shared (concurrent) access to foreign libraries.

• The need to have the basic facilities of the ALM available to other parts of the compiler
early in the project.

• The AL~[costs in time and space in comparison to those of the compiler.

• The portability requirements of the compiler.

Locking algorithms prevent inconsistent information from reaching other parts of the
compiler by blocking transactions that might produce an inconsistent view. \Ve considered
several locking and serial \'alidation schemes for the U~IX Ada System. Serial validation
was rejected for two reasons. First. the effect of a series of transactions that result from a
compilation may not be found to be invalid until just before the compilation is to be
completed: with serial validation. inconsistent information could very easily reach other
parts of the compiler. Second. the cost of a compilation (the unit of failure) and the
percentage of the database affected by a compilation "'ere considered high enough to make
serial validation techniques appear unattracti\'e.

Once locking was chosen. the problem of granularity of locking became important. Should
locks be placed on the DICTIO~ARY entries of individual compilation units. on libraries.
or on the entire system? Should a hybrid locking scheme allow some combination of the
abo\'e schemes? Because of details of the internal structure of the DICTIO~ARY file. it
pro\'ed impractical to attempt locking at the entry le\'el. Such locking required far more
overhead than could be justified for the gain in concurrent accesses. Locking the entire
system (i.e. all ada libraries) was also quickly rejected: it would effectively eliminate
concurrent access. Locking libraries turned out to be reasonably easy to implement and has
pro\'ed adequate for testing needs during development. ""e look forward to getting
feedback on this from users with large projects. Proper division of a project into libraries is

-255-

expected to be one of the most significant factors determining the number of concurrent
compilations that are possible.

Another aspect of locking algorithms is the choice of lock types. Locking schemes that offer
more lock types tend to allo": greater concurrency at the expense of additional overhead.
Single state locking (accessino access) was rejected out of hand because it unnecessarily
limited access to shared libraries. Such an approach would. for example. prohibit a user
from getting a report about a foreign library in which another user was doing a compilation.
Read/write locking was also considered and rejected in favor of read/modify/write locking.
Three state locking (read/modify/write) has the advantage of being easily converted to
readiwrite locking or upgraded to a more sophisticated scheme in the future. In summary.
our lock types are

• READ: A read lock prohibits users from modifying a library. \\'hen a compilation
imports a unit from a foreign library. it requests a read lock to prevent that library from
being altered before the compilation completes,

• MODIFY: A modify lock is used to give a user the exclusi\'e right to alter the current
library's DICTIO~ARY file. A modify lock may be held on a library while read locks
exist. but not while a modify or write lock is held by another user.

• \VRITE: A write lock is required before a process can update a library. \Vrite locks are
exclusive; they do not share with read or modify locks, A process holds a write lock only
while it is actually writing the DICTIO~ARY to disk.

The compiler sets a modify lock on its home library and seeks to upgrade it to a write lock
just before it commits its results. It requests a read lock on each foreign library that
contains any additional required compilation units. It is possible for a process to "starve"
because it is unable to acquire a write lock when many reads on that library are active. If
this problem becomes significant. an additional lock type. the intention write lock~ can be
added to prevent starvation.

U~IX record locking provides the basic primitives that detect deadlock. The AL~

terminates a compilation that detects deadlock. The user is also able to set a bound on the
amount of time the compiler will wait to get a lock before it gives up.

4. Building Complex Programs in the Ada Em"ironment

U~IX programmers use tools like make to keep large programs in a consistent state.
Because writing and maintaining the makefiles for a large program is a significant. error
prone chore. many applications provide automated makefile generators. In the process of
trying to determine hov.: to produce an automated makefi/e for Ada programs. we realized
that all of the relevant compilation unit dependency information existed in the ALyl
database itself! And if we would also store the specified compiler options for files during
compilation. we would ha\"e enough information to recompile a file.

:\1any interesting design issues needed to be resoh"ed before we could complete our program
build facility. adamake. Should makefiles be generated? "'hat operations should be
permitted on foreign libraries? How would source archives be handled? How should
adamake deal with routines that were not coded in Ada'~ \Ve touch on these issues as we
describe the design of ad£lIHake.

·tt Adamake Basics

As Figure 1 illustrates. adamake is a command driver \vhich dews the Ada compiler as a tool
for determining the attributes and dependencies of the compilation units in a source file and
for compiling those units. In fact. adamake calls the compiler as a subroutine. This tight
coupling allows multiple recompilations to be done within a single process - a behavior that
make does not provide.

-2J6~

Having adamake and the compiler operate as a unit has the advantage of allowing the
internal data structures that represent the dependence graph to be shared between two
logically independent traversals. The traversal made by the ALy[(as a service to the
compiler) to determine dependent units may be considered to be the 'inner' walk; the
traversal made by adumake to determine the units to compile is the 'outer' walk. The fact
that these traversals generally visit the same set of compilation units should significantly
decrease the overhead of using adamake. A particular case of interest is the case where a
user has provided two versions of the same compilation unit to udamake. each in a separate
source file. Such a situation. generally the result of a user error. requires great care for a
program building tool to handle well.

Large projects generally require some mechanism to regulate changes in source code.
Adumake encourages the use of SCCS[5). the U~IX system source control utilities. by
automatically using the most recent version of source available. It considers SCCS files to be
optional and so does not complain if a particular file does not have a corresponding SCCS
file, .

Adamake is significantly affected by the access policy one chooses for foreign libraries. Our
present policy lies on the consen'ative side of the continuum that ranges from disallowing
foreign library access and updates to not distinguishing at all between home and foreign
access rights. Disallowing updates in foreign libraries allows a greater degree of concurrent
access then do more liberal update policies. \Ve believe that most projects will be structured
so that their natural partitioning will not require foreign library updates. Experience in the
field will dictate whether or not to shift this policy.

We have discussed adamake in the context of programs that are written solely in the Ada
language. In a multi-lingual environment. a user of the U~IX Ada system has the option of
invoking adamake or ada from within a standard makefile. Alternatively, object or archive
files may be specified on a command line and they will be linked in with the Ada modules.
An enhancement under consideration is to provide a pragma which would allow an arbitrary
shell command to be specified within an Ada compilation unit. That command would then
get invoked prior to the compilation of the Ada source file. Finally. while we do not
currently produce a make file . there is nothing in our approach to PJ"eclude adding this option
for users who may wish to use some of the macro facilities of make.

5. AL~I as the l'ser Interface

We have described how the .-\.L~·[manages separate compilation for the compiler and for
adamake. The AL~[also serves the Ada programmer directly as the mechanism for
interacting with Ada program libraries. \Vith the aim command. the user can create.
destroy, and manipulate the contents of Ada program libraries. Thus. the ALM is also the
interface to everyday use of the Ada programming environment provided by our U~IX Ada
System. This section describes some of the AL~I tools as seen by the Ada programmer and
discusses the design philosophy behind the choices we made in their implementation.

5.1 Tools to ~(anage Program Libraries

The classes of tools provided by the aim command are as follows:

• Creating and destroying Ada program libraries

• Translating between Ada library aliases and U~IX System directory names

• Renaming and mO\'ing Ada program libraries

• Copying and deleting source file entries

• Reporting on Ada program library contents

-257-

• On line help facility

These are an obvious set of needed tools for the creation and manipulation of Ada program
libraries. One aspect of the report package~ however~ merits some discussion. We expect
that a given program library will potentially grow quite large over time as compilation units
are added and older ones are modified. We took extra care in providing report capabilities
that would give crucial information to the programmer regarding compile times. features of
the compilation unit and'its source file~ dependency of the unit on other compilation units.
and so on. Reports can be generated easily for any named compilation unit in any program
library. Reports can be sorted by time of compilation or alphabetically by name. Source
files or compilation units can be selected for inclusion in reports on the basis of the presence
of various attributes computed by the compiler or on the basis of compile times before or
after a given date and time.

In general. these AL~'[commands enable the Ada programmer to create and manipulate
program libraries without worrying about the details of the implementation of a program
library as a U:"1IX directory structure. In effect. the implementation of an Ada program
library is hidden from the user much as Ada hides a private data object from direct
manipulation. However. we expect that our users will be very interested in using other
U~IX System features. ~othing in our system pre\'ents users from doing just that.

5.2 '\'ho is the Ada Programmer

\Vhen we envisioned the user interface for the AL~1. we had to consider \\o'ho the user would
be. Because there are few Ada compilers in use in a true software production environment
in the outside world. we had to make some educated guesses about users and their needs.
\Ve conceived of our users as knowledgeable U~IX System programmers. At the very least.
we assumed our users would be experienced programmers who would pick up a working
knowledge of the U~IX file system and many user-level commands quickly. Thus~ we
decided that we would provide tools that looked and worked like other U~IX tools. as much
as possible.

5.3 An 'Ada Shell' for Interactive Use of the AL)l

We also thought that some users would want to conduct their work more completely in the
framework of an Ada-like domain. Thus we provided an interactive mode for the aim
command. \Vithin this interactive mode. commands are issued by typing keywords
associated with the option letters of the command mode. \\'e consider this interactive mode
to be a prototype "Ada Shell", \Vithin this shell. Ada library aliases can be reckoned with
more directly. For example. we have provided the equivalent of change directory (cd) where
the argument is the library alias associated with the desired U~IX directory. As with all
manner of shells. our Ada Shell is. easily escaped for single U~IX command calls. the
spawning of another shell. or the invocation of the Ada compiler. The interactive mode also
allows the user to execute a list of AL~'I commands that appear in a file. Finally. within the
Ada Shell. users can modify the default U~IX directory structure of an Ada program library
itself by changing. for example. the directory for source. object. or sees files,

5.~ Tools That Can be)Iodified and Extended

As mentioned earlier. we recognized some uncertainty in defining the Ada programmer
users of our system, Therefore. we decided to be flexible in approaching the form and
content of the user interface. First. we designed our tools to be easily modifiable. This was
implemented with ~tandard "good" programming practices of top-down design and modular
construction of the commands themselves. Second. we decided to approach the problem of
user needs directly by seeking out user feedback as early as possible. \Ve did this. and
continue to do so through an on-going program of alpha and beta sites. In this manner. we
can get an early reading on the clarity of error messages and of the adequacy of our set of
tools to meet user needs.

-258-

6. Tools for Installation and Administration

The AL~r relies on the presence of certain files and shell environment variables that must
be made accessible to system administrators, as well as Ada programmers. These need to be
provided to user sites in a reasonable fashion. \\'e decided to implement a separate package
of tools for Ada system administrators to instaH and maintain their Ada systems. The end
result is adm_ada - a program that provides needed support files and administrative facilities
for project leaders who would be setting up an Ada site, The program is completely
interactive in its nature, It sets shell environment variables and creates default template
files to user specification that will structure the Ada environment pervasively. The result is
a setup that provides flexibility to project leaders while easing the startup cost to the
individual Ada programmer.

7. Future ',"ork

The following list itemizes area~ for iuture \\ ark in the library manager.

• Should the AL:'v1 database maintain information about compilation units that were not
wri uen in Ada?

• Should information be retained about the names and locations of the executables
generated by the compiler'? Currently, l:~IX Ada does not retain such information
because executables are frequentl~ mo\ed and or renamed.

• Should we allow updates to foreign libraries? Currently, we take the careful approach of
disallowing such transactions. Howe\'er, the global use of adamake to build a target with
outside dependencies is potentially limited by this restriction.

8. Conclusions

This paper has described some of the decisions we made as we designed and implemented
the Ada Library ~fanager for the U~IX Ada System. \\'e made the ALM a comprehensive
database manager for Ada compilation units, and we made it an effecti\'e link between the
compiler and the programmer, \\'e provided a mechanism to map between U~IX pathnames
and unique Ada aliases to ease the burden on the end user and to provide a partial hiding of
the U~IX System implementation. At the same time. our approach did not hinder the use of
familiar U~IX tools. \Ve provided a program build facility (I.ldamake) that makes optimal
use of information already computed by the compiler. Finally, we also provided a set of
tools (in adm_ada) tor administration and installation of the v~nx Ada System,

To summarize the effect oi these decisions, we feel that the ALyf enables the U~IX Ada
System to become fully integrated into a l:~IX system's family of languages. It makes use
of existing operating system and utility features where\'er possible and offers simple
extensions to the en\'ironment as required by the Ada language definition,

-259-

References

[1] "Reference Manual for the Ada Programming Language". ANSI!M:IL-std-1815 A. U.
S. Department of Defense. February 1983.

[2] Feldman. S. 1. "Make - A Program for Maintaining Computer Programs", Documents
for U~IX. Volume 1. Bell Laboratories. January 1981.

[3] Knuth. D.. "The Art of Computer Programming". (1973) Volume 1. Section 2.5.

[4] Langer. J. "The Ada BreadBoard Compiler: The Ada Linker". Internal memorandum.
Bell Laboratories. 1982.

[5] Bonanni. L. E. and Salemi. C. A. "Source Code Control System's User's Guide".
Documents for U:"HX. Volume 2. Bell Laboratories. January 1981.

-260-

Figure 1.

UNIX Ada Library Management

II ADAMAKE II I_AD__A I II~AL---..:MII

compiler

internals

I ADALINK I

1
I UNIX LD I

library manager primitives

DICTIONARY files Ada Source files

Symbol Table files Object files sces files

Targeting Ada to 68000/unix

Mitchell Gart
Alsys Inc.
1432 Main street
Waltham, Mass. 02154

Abstract

We discuss the targeting of an Ada compiler
to several GaOoO/unix systems. The main focus
is on the interactions between Ada - the runtime
model, generated code, and runtime system - and
Unix. Some problems that are general to the
mapping of Ada to Unix, as well as some problems
that are specific to the Unix implementations to
which the compiler is targeted, are mentioned.
Finally, we give some of our experiences as
users of the resulting Ada/Unix compiler. We
find that for most kinds of applications, Ada
fits well on Unix.

-262-

1 Introduction

Alsys is developing a family of Ada compilers that are
organized into a mostly machine-independent "root Ada
compiler" and target-specific code generators and
runtime systems. The first compiler in this family
(validated December 1984) was a cross-compiler from the
Vax to the Altos ACS 68000, a small multi-user Unix
System III machine built around the Motorola 68000.
Since then we have validated self-hosted compilers for
the Sun, Apollo, and Hewlett-Packard HP-200 machines,
based on the 68010 and the 68020 and running Unix System
V and 4.2 BSD. We are also engaged in a parallel effort
towards an Intel 8086/8088/80286 compiler for the IBM PC
AT running under DOS. The 68000 target machines that
will be mentioned in this paper are the above Altos
machine, afterwards referred to as "Altos", and the
Hewlett-Packard HP-200, a 68010 Unix System V machine,
afterwards referred to as "HP".

1.1 Runtime model and runtime system

In this paper we will discuss the Ada runtime model and
runtime system, and their interactions with the Unix
targets. The runtime model consists of such issues as
how a program starts execution, how its code and data
are laid out in memory, how its stack grows, how data is
addressed, how such Ada constructs as tasking,
exceptions, and input/output are mapped to the target
system, and so on. An Ada program that is compiled and
linked on Unix represents a mapping of Ada source code
to 68000 machine instructions that are generated inline,
along with calls to the Ada runtime system (RTS). There
are typically two kinds of RTS calls in the generated
code: calls that correspond to explicit user program
calls for a service in a predefined package such as
CALENDAR or TEXT IO, as well as calls that are
implicitly inserted by the compiler into the code
stream.

An example of an implicitly inserted call occurs when
the Ada semantics dictate that a task is to be
activated. A call to the RTS procedure ACTIVATE TASK is
generated. A second example is that the compiler may
decide that a certain user-declared object, such as an
array with size known only at execution time, will be
allocated on the heap via an RTS call. This example is
interesting because it shows one of the ways that the
root Ada compiler is parameterizable to a given target

-263-

machine. The decision where each object is to be
allocated (global data, heap, or stack) is made based on
parameters that differ for different target machines.

The major RTS components are:

task kernel
heap manager
exception manager
input/output

CALENDAR
attributes
SYSTEM
arithmetic

(TEXT IO, DIRECT IO, and
SEQUENTIAL_IO) -

('SIZE, 'IMAGE, etc.)

(exponentiation, floating point
simulation, etc.)

of which CALENDAR, SYSTEM, and the input/output packages
are directly callable by a user program, and the rest
are called implicitly. The implicitly-called components
are grouped into the package ADA RUNTIME, which is put
into a user's Ada library upon creation, but which is
not directly callable by a user program (i.e. a "with
ADA_RUNTIME" clause is prohibited).

ADA RUNTIME is a package with an Ada specification.
The bodies of the different routines are written mostly
in Ada (the parts that are expected to be
target-independent), some in C (most of the parts that
have to make specific interactions with Unix), and a
little bit in assembler (for example the low-level
routine that saves and restores machine registers on a
task switch) •

1.2 The rest of this paper

In the next sections of this paper we will first focus
on the interactions between the Ada runtime model and
RTS with 68000/Unix, in such areas as memory
organization, program startup, tasking, exception
handling, the heap, and input/output. We will then
focus on some problems that arose in targeting the RTS:
problems that are general to Unix and problems that are
mostly related to incompatibilities between the
different Unix implementations. Finally, we give some
of our experiences as users of the resulting Ada/Unix
compiler.

-264-

2 Mapping the runtime model to Unix

2.1 Memory organization

The memory layout that we typically find on target
6aOOO/Unix systems is to have a Unix process with a
virtual memory layout from address 0 (Altos) or a small
constant (16K on HP) up to a maximum address of either
2**23 or 2**24. Code, then static data, then heap, are
laid out at the low addresses, growing toward higher
numbered addresses. The stack starts at the top and
grows toward lower numbered addresses:

<- virtual address 0
code

static data

heap
<- break

growth

<- Unix idea of end of stack
stack buffer

stack
<- application's idea of end of stack

<- virtual address 2**24

The Unix kernel handles the memory mapping that gives
each process this view of its virtual address space.

An Ada program's code, global data, and "environment
task" stack are mapped into their respective regions in
the above diagram (no big surprise). We would have
liked to map Ada static constants into the code section,
so that they could be protected when a program is linked
with one of the Unix linker's options that makes
write-protected code, but we discovered that on the
Altos write-protected code is also read-protected and
execute-only, so constants had to be mapped into the
static data region. (This is the first example, more of
which will be mentioned, of a small surprise that
impacted our implementation, and that was different
between different 6aooo/unix implementations.)

Inside these memory regions, the RTS heap manager
handles the heap. Stacks and control regions for Ada
tasks are allocated inside the heap, and the exception
manager uses the "stack buffer". These points are

-265-

expanded in the following sections.

2.2 Program startup

The steps of Ada program startup are:

standard C runtime startup
C main program
environment task body
main Ada subprogram

(crtO.s)
(main.c)

(main. ada, or another name)

The standard assembler runtime executes and calls a
small main.c, which is an RTS component. The purpose of
main.c is to establish signal catchers for the Ada
program, to save argc, argv, and the environment
pointers in static variables so that they can be
accessed later from the special Ada-callable package
UNIX ENV, and then to call the "environment task". The
latter is our name for the environment around the main
Ada subprogram. It contains calls to elaboration code
for all of the library packages in the application,
which according to Ada rules must be elaborated before
the main sUbprogram. Finally, the main Ada sUbprogram
is called. It must be a parameterless procedure in our
implementation, but it can access its command line and
environment via, for example, UNIX_ENV.ARG_VALUE(l) ,
which returns a string or raises an exception if there
were no command line arguments.

Return from the main Ada sUbprogram ends execution.
We provide the possibility for a program to return an
integer status result to the Unix shell via
UNIX ENV.SET RETURN CODE. The default value returned is
0, corresponding to-the Unix shell's convention for nno
error".

2.3 Tasking

A major question in targeting Ada tasking is the mapping
between an Ada task and a target operating system
process. In general, Ada tasks can share variables, as
well as passing variables to one another via entry call
parameters. Because of the lack of shared memory
between Unix processes on System III, as well as the
limited interprocess communication primitives (pipes and
signals), we chose to map an entire Ada program,
possibly containing several tasks, onto one Unix
process.

-266-

When a task is created its task control block (TCB)
and stack are allocated from the heap. The default size
of a task's stack is currently 16K bytes, but this may
be overridden by either a pragma inside the Ada program
or via a command line switch. Once allocated, a task's
stack has a fixed maximum size and cannot grow (unlike
the "environment task", whose stack can be extended by
unix). Each task's stack resembles that of the
environment task, with a small stack buffer at the end.

One task is running at a time, and the others are
idle. Each idle task contains a copy of the 68000
registers inside its TCB. A task switch is accomplished
by copying the current registers into the TCB of the
switched-out task, then restoring the registers of the
switched-in task from its TCB, in a small assembler RTS
module.

When a task other than the environment task is
running, the stack pointer (address register A7) and
frame pointer (A6) indicate a "stack" that was allocated
within the heap, rather than the Unix idea of the stack.
An end-of-stack pointer is kept to insure against stack
overflow.

Equal priority tasks may be switched with
time-slicing or not, as a user option. Time slicing,
and also delay statements, are handled by setting a Unix
alarm, catching the resulting signal, and transferring
control to the task kernel, for a scheduling decision.

The task kernel has a lot of work to do. It handles
decisions about scheduling, task activation and
termination, and many other matters. For task
rendezvous (entry call, accept, and select statements)
it must manage queues of waiting tasks. The
organization of the task kernel, as well as the rest of
the RTS, other than the parts that interact with Unix,
are beyond the scope of this paper.

2.4 Exception handling

Ada requires that many compile-time and runtime checks
be performed to insure the consistency of a program. If
a check fails at runtime, an exception is raised.
Exceptions are supposed to occur only rarely, in error
situations, so the goal of an Ada implementation is to
perform the checks with as little time and space
overhead as possible for the case where the check is OK

-267-

and no exception is raised. The code for a check is
usually the machine-code equivalent of:

if check fails then
raise predefined_exception;

end ifi

and the code generator must make the most efficient code
to perform the check, as well as the most compact code
to do the "raise". A call to an RTS routine to do the
raise would take a 6-byte instruction, but some 68000
trap-style instructions are only 2 bytes, so we have
used these instructions.

Unfortunately these instructions
non-portable between 68000/Unix
following chart indicates:

Trap-type instructions

Altos

are notoriously
machines, as the

HP-200

trap#O
trap#l
trap#2
trap#3
trap#4
trap#S
trap#6
trap#7
trap#8
trap#9
trap#10
trap#11
trap#12
trap#13
trap#14
trap#lS
*debugger

divs by 0
divu by 0
trapv (V clear)
trapv (V set)
chk (OK)
chk (fails)

system calls
SIGIOT
no-op
no-op
no-op
no-op
no-op
no-op
no-op
no-op
no-op
no-op
no-op
no-op

SIGTRAP*
no-op

no-op
no-op
no-op
no-op
no-op
no-op

system calls
SIGTRAP*
SIGILL
SIGEMT
SIGILL
SIGILL
SIGILL
SIGILL
SIGFPE
SIGILL
SIGILL
SIGILL
SIGILL
SIGILL
SIGILL
SIGILL

SIGFPE
SIGFPE
no-op
SIGILL
no-op
SIGILL

-268-

but we chose to use them because the resulting code is
so much more compact.

The 68000 has 3 very useful instructions for
performing checks: TRAPV (trap on arithmetic overflow),
DIV (a check for 0 dividend is performed automatically),
and CHK (trap if a register is < 0 or > a specified
value). Unfortunately these instructions are masked by
the Altos Unix kernel, presumably because they aren't
useful for C programs. We plan to use them on other
68000 machines.

These trap-style instructions cause Unix signals,
which are caught by a signal catcher (written in C) .
For an exceptional trap the catcher reads its (the
catcher's) return address to see where the signal
occurred, reads the trap instruction to see what kind of
Ada exception, and calls the exception manager. For an
alarm signal, the signal catcher calls the task kernel.

Because there is a stack buffer (a piece of the stack
reserved for RTS execution) the signal catcher has room
to run when the stack overflows. If the environment
task is running, it tries to extend the stack, returning
to the application if successful. If there is no room
to extend the environment task's stack, or if another
task's stack overflows, the signal catcher has enough
space to execute code that raises STORAGE ERROR in the
user's program.

2.5 Heap and I/O

For both the heap manager and the input/output packages
our basic approach has been to use the Unix system calls
(SBRK for more memory; OPEN, READ, and so on to access
files) but to bypass the standard C library functions
(malloc and the stdio routines). For the heap we wanted
a slightly different organization than malloc, with
special treatment for Ada collections (groups of heap
objects pointed to by the same access type) grouping all
objects in a collection so that they can be freed
together. Ada I/O (especially TEXT_IO) has to perform
functions that are different from printf.

There is a very nice correspondence between the Ada
and Unix notions of STANDARD INPUT and OUTPUT (in fact
the Ada designers borrowed these concepts from Unix).
There is no Ada notion that corresponds to the Unix
standard error file, so we occasionally use this file

-269-

for RTS error diagnostics.

3 Major problems in targeting to unix

3.1 Tasking

The ideal target operating system for running an Ada
program would provide a 2-level set of primitives
similar to "program" and "task" rather than the Unix
I-level "process". All of the data and code within a
program would be shared by the tasks of the program, but
each task would have a stack that grows independently,
with the growth managed by the operating system.

For intertask communication, the Unix System V
primitives (semaphore and message) seem to be
sUfficient, but we haven't investigated this closely.
System V also allows zones of data memory to be shared
between processes, so we are tempted by the idea of a 1
Ada task/Unix process implementation on System V. This
still seems difficult because static data, heap, and
stack memory all potentially must be addressable by all
of the tasks in a program, for example if a task entry
parameter is passed by reference, or if an entry
parameter is an access type.

The Ada manual recommends that a delay statement have
a precision of at least 20 milliseconds. HP allows
this, but Altos implements only a 1 second precision for
the alarm clock.

3.2 Input/output

When several tasks are inside one Unix process, and one
task blocks on an I/O operation, it is desirable to have
only that task be blocked, not the entire Ada program.
There is a workaround to this problem that is
complicated to program. It involves using the System
III FCNTL call to set non-blocking I/O. This solution
is far from ideal because a program doing non-blocking
terminal I/O crashes under the ADB debugger.

A Unix I/O operation that fails returns the reason
for failure in a static variable named ERRNO. If a task
performed an I/O operation, was switched out and then
back in, and then read ERRNO, it could get the value
that had been set by another task. The solution, in a
program that uses tasking and I/O, is expensive: a

-270-

runtime mutual exclusion mechanism can surround each I/O
call.

The Ada I/O packages provide function NAME which
returns the full pathname of an open Unix file. If an
Ada file is open to a Unix terminal, NAME should return
"/dev/tty", whether the terminal is open for input or
output, but there is an ACVC test that requires that
NAME (STANDARD INPUT) and NAME (STANDARD OUTPUT) be
different. The author considers this to be-a bug in the
ACVC test suite, not a unix problem.

3.3 Incompatibility

To a compiler writer, compatibility between target
machines means compatibility at the machine code level.
Unix standardization efforts have focussed on the system
call level and the C library level (the same call, with
the same parameters, should have the same meaning on
different Unix implementations). At the machine code
level, we have found many annoying differences between
68000/Unix machines.

Two examples, write-protected code and trap
instructions, have already been mentioned. Another
examples is the assembly language itself! HP supports
the Motorola assembly language (e.g. "move.w #6(aO),
dO"), but Altos supports a PDP-II-style assembly
language ("movw aO@(6), dO"). This means that RTS
components written in assembler must be translated.

A few more incompatibilities:

- the context of a signal (where on the stack
registers are saved) is needed by the signal catcher
to see where and why it was called. This information
is difficult to find in any manual, and differs
greatly between machines.

- the method to extend the main stack is different on
each system we have tried.

In addition to the C source standards for calling
library functions, it seems desirable to have another
level of standard that would say: "Version N Unix,
running on machine architecture X, has assembler
conventions that: instruction I has effect
instruction 2 has effect "etc. This would be an
extra level of Unix standard (a Unix sub-standard?) that

-271-

would move toward binary code compatibility, a desirable
feature that doesn't exist now.

4 Experiences using Ada

At Alsys we are Ada users as well as Ada implementors.
Our compiler and most of our toolset are written in Ada.
We are starting to have a significant amount of
experience as Ada users on VAX/VMS, 68000/Unix, and
80286/DOS. Ada is proving to be a good language with
which to do our work as programmers. Ada programs
execute fast on the target machines, and are proving to
be highly portable between target machines.

The compiler consists of around 700 compilation units
and 250,000 lines of Ada source code. The Ada
facilities for program structure (public specifications,
private implementations, and trees of sUbunits) have
been tremendously helpful to us as software engineers,
in organizing this large software project. The HP, Sun,
Apollo, and IBM PC AT compilers are now "bootstrapped"
or compiled through themselves. Because we were careful
to isolate the system-dependent parts (such as the
COMPILER IO package) the root compiler's source code has
proved to be portable without too many problems.

4.1 Portability

Programs that we have written in Ada are proving to be
very portable between the Vax, the 68000, and the 80286,
running under the 3 different operating systems. The
Ada Program Viewer is an Alsys tool that allows a user
to browse through the source modules of an Ada program,
"zooming" in and out to different levels of detail. The
Viewer is written in Ada (about 9000 lines) and porting
it from the 68000 to the 8086 required only a change of
one package body that did screen input/output and
windowing, no other changes to the program source.

We learned from the Viewer experience that Ada alone
doesn't guarantee good software engineering. The first
port of the Viewer, from the Vax to the 68000, was
difficult because the I/O and windowing code was
distributed around the program. Once the program was
reorganized to encapsulate these actions into one
package, the second port, from the 68000 to the 80286,
required no changes outside this package body.

-272-

4.2 Effioienoy

Applications written in Ada are proving to execute
faster than Pascal, and at around the same speed as C,
on the Unix and DOS target machines. At press time,
figures for the 68000 machines were unavailable, but the
following benchmarks compare the efficiency of generated
code on the IBM PC AT:

PC AT Benchmark results
--

Perm Towers Queens IntMM MM Puzzle Quick Bubble Tree FFT Ack
Alsys Ada, no checks:

2.31 2.25 1.81 5.10 9.87 34.21 1.39 4.78 1.64 11.85 23.34
Alsys Ada, checks:

3.34 3.51 2.75 6.09 11.09 39.81 2.81 7.18 1.92 13.46 31.00
Lattice C, large model:

2.86 2.31 4.11 12.31 40.48 12.91 5.82 1.81 3.63 61.29 37.02
Lattice C, small model:

2.41 2.26 1.31 2.53 29.28 13.12 2.53 1.81 3.30 52.78 35.37
Turbo Pascal:

4.56 4.4 2.96 3.52 79.58 14.61 3.07 4.23 7.14 121.33 72.72

Time totals:

Ada (no checks)
Ada (checks)
C (large model)
C (small model)
Turbo

no f.p.
76.83
98.41
82.78
64.64

117.21

floating point (MM + FFT)
21.72
24.55

101.77
82.06

200.91

Times are in seconds, on an 8MHz IBM PC AT. The
benchmarks are:

Perm:

Towers:

Queens:

MM:

IntMM:

Puzzle:

Quick:

Generate all permutations of 7 integers 5
times (recursive)

Solve Towers of Hanoi (14 discs, recursive)

Solve 8 Queens problem 50 times

Multiply 2 40x40 matrices of 32-bit floating
point numbers

Multiply 2 40x40 matrices of 16-bit integers

A compute-bound puzzle program.

Quicksort 5000 integers

Bubble:

Tree:

FFT:

Ack:

-273-

Bubblesort 500 integers

Binary tree sort of 5000 integers

Do 256-point Fast Fourier Transform 20 times

Compute the Ackerman function ack(3, 6)
10 times.

These figures are not meant to be a precise
measurement of the relative quality of compilers, but
merely to show a general result: that we are able to
confidently claim that Ada is able to generate code that
is at least of comparable efficiency to these other
languages.

For the floating point tests, Ada uses the 80287
floating point co-processor. We think that C also uses
the co-processor, but that Pascal does its computations
in software. We used Revision 2.15 of Lattice C and
Version 2.00A of Turbo Pascal for the tests. In Lattice
C, the "small model" allows a 64K byte limit for code,
plus 64K combined global data plus stack plus heap.
"Large model" doesn't have these restrictions. The Ada
results can therefore be most fairly compared to the C
"large model" results.

5 Conclusions

An Ada compiler (and related tools) fit nicely into the
Unix environment, and are useful for writing
applications. We are enthusiastic about our experiences
as users of Ada.

Unix is an excellent host system for Ada program
development.

Unix is an excellent target system for running Ada
applications that don't have heavy real-time
constraints, and that don't use tasking "too much". We
seem to be able to produce Ada code that executes as
efficiently as C. We are happy with the correctness of
the tasking implementation, and an application with a
few parallel tasks and an occasional task switch runs
very efficiently.

As a target for a real-time Ada program, or a program
that makes very heavy use of tasking, the standard
time-sharing versions of Unix have inherent limitations.

-274-

6 Acknowledgements and trademarks

Jacques Sevestre headed the 68000 codegen team, and
helped a lot with the preparation of this paper.

The C and Pascal versions of the benchmark suite were
given to the author by John Hennessy.

Ada is a registered trademark of the united states
Government (AJPO). Unix is a registered trademark of
AT&T. VAX and VMS are trademarks of Digital Equipment
Corporation. IBM and IBM PC are registered trademarks
of International Business Machines. Lattice is a
registered trademark of Lifeboat Associates. Turbo
Pascal is a trademark of Borland International.

A Comparison of UNIX t and CAIS System Facilities

Helen Gill

Rebecca Bowerman

Chuck Howell

MITRE Corporation
1820 Dolley Madison Boulevard

McLean, 'fA 22102

1. INTRODUCTION

The Ada ~ Joint Program Office (AJPO) has supported several efforts aimed at designing
and implementing an Ada Programming Support Environment (APSE) and at designing a stand
ardized set of system calls, the Common APSE Interface Set (CAIS). The original purpose of
the CAIS was to serve as a common kernel-level interface for two APSEs being developed for
the 000: the Ada Language System (ALS) and the Ada Integrated Environment (AlE). How
ever, the AlE effort was reduced to a compiler and debugger development, and the ALS encoun
tered serious schedule slips. There has been a proliferation of environments used for Ada
software development in the 000 community. As a result, the charter of the CAIS has evolved
to a more general operating system capability, increasing the complexity of hosting it· on any
existing operating system.

1.1. Purpose

The purpose of this analysis was to determine the extent to which the CAIS accommodates
the needs of tool writers. UNIX, an operating system and se.t of tools originally developed at
Bell Telephone Laboratories, is a programming support environment that supports a variety of
languages, including Ada, C, Pascal, FORTRAN, and LISP. UNIX is one of the most widely
used APSES.

1.2. Scope

The scope of this analysis is limited to a comparison of the system calls in the Berkeley
4.2BSD version of the UNIX operating system to the Proposed MIL-STD of the Common APSE
Interface Set (CArS), as specified in [CAIS]. The focus of this analysis is the tool writer's per
spective. That is, the analysis examines those areas where there might be an increase or loss of
capabilities to the tool writer when using Ada and CAIS system calls as opposed to Ada and
UNIX system calls. The comparison is between UNIX system calls and CAIS facilities because
the system calls represent the fundamental capabilities of UNIX and provide the basis for UNIX
library-level calls. Discussion of CAIS capabilities beyond UNIX is not included in this paper.

1.3. Report Organization

This report begins with a brief background that explains the need for a comparison of this
type (Section 2.0). Although time and space do not permit a complete introduction to the pro
posed MIL-STD CArS, a brief description is given. The technical issues section (section 3.0)

!. UNIX is a trademark of AT&T Bell Laboratories

'. Ada is a registered trademark of the US. Government, Ada Joint Program Otike

-276-

presents a broad categorization of UNIX system calls and addresses the comparison of UNIX
with the CAIS within each of these areas. Section 4.0 summarizes the analysis. The Appendix
presents corresponding UNIX system calls and CAIS calls or supporting features in tabular form.

2. BACKGROUND

This section provides a brief history of the DoD efforts to build Ada programming support
environments that led to the design of the CAIS and a high-level overview of the CAIS.

2.1. History or the CAIS

In 1980 the Army awarded a contract to SofTech to develop an Ada compiler known as
the Ada Language System (ALS). The Army later expanded this effort to include a variety of
software support tools, host dependent services, and a database. Although no special program
ming environment is needed to use the Ada language, it was commonly believed that an
integrated set of tools would speed the acceptance of the language. As a result, in 1980 the DoD
published the Requirements for Ada Programming Support Environments [STONENlAN], the
"Stoneman" document. Soon after the publication of Stoneman, the Air Force awarded a con
tract to Intermetrics to build the Ada Integrated Environment (AlE), a programming support
environment based upon Stoneman.

The existence of multiple DoD-sponsored APSEs threatened to undermine the benefits of
commonality, which was the primary goal of the Ada program. As a result, the Kernel APSE
(KAPSE) Interface Team (KIT), a tri-service organization chaired by the Navy under the gui
dance of the Ada Joint Program Office (AJPO), was established in late 1981. Here, the term
"kernel" refers to the host-dependent code that supports the system call interface, roughly
analogous to the Chapter 2 calls provided by UNIX. The objective of the KIT was defined by a
Memorandum of Agreement signed by the Deputy Under Secretary of Defense and the Assistant
Secretaries of the three services. It stated that the KIT was to define a standard set of inter
faces meant to ensure the interoperability of data and the transportability of tools between con
forming APSEs. The KIT soon became responsible for a variety of Ada-related activities and
formed a subgroup, the Common APSE Interface Set (CAIS) Working Group, to focus on
defining the standard set of interfaces.

Meanwhile, the scope of the implementation of the AlE was reduced; KAPSE level ser
vices are not included. Work by the CAIS Working Group continued and began expanding from
a common set of system interfaces to more general operating system capabilities. In September
1983 a public review was held for version 1.1.2 of the CAIS. A major criticism raised in the
public review was that although the CAIS had reached detailed specification, no requirements
document existed. Although the Stoneman requirements document mentions a CArS-like capa
bility, it does not contain the detailed requirements for one.

CArS 1.2 and Technical Note 1.0 were available on request in June 1984, and CAIS 1.3
was released for public review in August 1984. An analysis similar to the present one was begun
under AJPO guidance. Following further revision, the proposed Military Standard was released
in January 1985. It includes a draft policy statement that restricts use of this version of the
CAIS to prototyping efforts. The proposed MIL-STD CAIS is the version that is treated in this
analysis. In November, 1985, the CAIS version 2.0 contract was awarded, with SofTech and
Compusec the contractor team.

2.2. Overview or the CAIS Specification

Ideally, all APSE tools would be implementable using only the Ada language and the
CAIS. The CAIS specification defines a set of Ada package specifications and their intended
semantics. The scope of the CAIS is limited to interfaces to those system services traditionally
provided by an operating system that affect tool transportability. Interoperability of data has
not yet been addressed. In support of transportability, the CAIS defines the concept of a "node
model." The CAIS document states that a CAIS implementation is to act as a manager for a
set of entities that are files. processes, and organizational structures. Ada packages that

-277-

support management of nodes and relationships, structures, files and devices, processes, attri
butes, and access control are defined. Additionally, the CAlS specifies a generalized list utility
package.

2.3. Overview of the CAIS Node Model

The CAIS model uses the notion of a "node" to represent information about an entity
(such as a file, directory, process, or device). The entities represented by these nodes have pro
perties and may be interrelated in many ways. The CAIS identifies three diffe~ent kinds of
nodes: structural, file, and process. File nodes have contents corresponding to ordinary files.
Special kinds of file nodes are used to represent devices and to support interprocess communica
tion. Structural nodes represent users and can be used to represent arbitrary structural infor
mation. A typical use of structural nodes with file nodes would be for creating file system
directory-like structures. Another use of hierarchical node structures is for the representation of
groups or roles for access control. A process node represents the execution of a program.

The 'CAIS node model uses the notion of a "relationship" for representing an interrelation
between entities and the notion of an "attribute" for representing a property of either an entity
or a interrelation. Some attributes and relationships are predefined; user-defined attributes and
relationships are supported, as well. There are two kinds of relationships: primary and secon
dary. Primary relationships are restricted; each node has only one primary relationship point
ing to it, although an arbitrary number of primary relationships may emanate from a node. A
node may have an arbitrary number of secondary relationships emanating from it and pointing
to it. Relationships can be used to build conventional hierarchical directory and process struc
tures as well as network-like structures.

In the CAlS model, there is a single system level node with user (structural) and device
(file) nodes as children. Process trees, hierarchically related collections of process nodes, are
subordinate to user nodes. A user may have more than one process tree, or job. Structural and
file nodes may be created as children of nodes of any kind to which the creating process has
appropriate access rights.

3. TECHNICAL ISSUES

This comparison of the UNIX system calls to the CAIS began with a broad categorization
of UNIX system calls and a systematic mapping of 4.2BSD UNIX operating system services to
functional equivalents in the CAIS where such existed. This mapping provides a starting point
for a UNIX tool writer to determine how to use the CAIS for support of tools written in Ada.
An analysis of the mapping uncovers higher level areas where the differences between the CAIS
and UNIX have a significant impact on tool development. The technical areas addressed are:

File system structures

Input/output and device control

Access synchronization and control

Process management

Interprocess communication

Error detection, recovery, and diagnosis

Clock and timer management

Resource control and accounting

System administration

For each technical area, the discussion includes the support provided by UNIX and the CAIS,
and the significance to the tool writer. (For a related analysis, comparing features of Version
1.2 of the CAIS with System V calls. st>e [MITRE]). The Appendix contains tables showing the
mapping for each technical area. A C:\C\ system call appears in more than one table wht>n it IS

significant for more than one area.

-278-

3.1. Iqle System Structures

File system support depends upon what is to be included, such as files and devices, upon
facilities available to the user for structuring interrelationships among these entities, and also
upon the facilities for managing information about them. Table 1 of the Appendix contrasts
UNIX and CAIS file system facilities.

3.1.1. UNIX File System Structures

The UNIX file system achieves simplicity and uniformity by limiting what it contains to
files and by organizing them in to hierarchical structures. UNIX file system objects are ordinary
files and "special" files (e.g. devices). Directories are just files containing pointers to other files.
All UNIX files are referenced uniformly, using a sequence of identifiers of directories that must
be traversed to reach the file of interest.

Although V:'JIX provides a basically hierarchical system, there is a capability for linking
from directories to existing files, permitting construction of directed graph structures. Hard
links are evaluated immediately and have essentially equal status with the original, hierarchical
link through which a file is created. A file is deleted when the last directory link to it is deleted.
Symbolic links, intended to. allow linking across (possibly unmounted) file systems, permit
delayed evaluation of references to files.

3.1.2. CAIS Node Model Structures

The CAIS model includes nodes: file nodes, structural nodes, and process nodes. These can
be combined in various ways to form more general file system structures, using relationships to
form directed graphs on nodes and attributes to represent meta-information about both nodes
and relationships. Naming is uniform in the CAIS, as well. A CAIS node is referenced by a
sequence of identifiers corresponding to the sequence of relationships that must be traversed. As
with UNIX, the benefits of uniformity are realized. As an example, a node can be accessed in
order to read its attributes or relationships without concern for the kind of node it is.

The CAIS distinguishes between primary and secondary relationships. Primary relation
ships define strictly hierarchical structures, established when nodes are created (as with UNIX),
while arbitrary graph structures can be constructed using secondary relationships. Renaming
changes the primary link to a node and is restricted to file and structural nodes. Secondary
links in the CAIS are analogous to UNIX hard links in that they are evaluated immediately and
track a node that is renamed. There is no CAIS analogue of the UNIX symbolic link.

Primary links are used to enable secure node deletion. When a UNIX file is deleted, write
access to the last directory in the path through which it is accessed is required, and that is the
directory from which the link is removed. However, when a CAIS node is deleted, its unique pri
mary relationship is removed, and it is unobtainable even though secondary links to it may
exist. Access to write relationships is required to the parent (source of the primary relationship)
of the node, even though the node to be deleted may be accessed through a secondary relation
ship. Secondary links to the deleted node become dangling references.

The types of nodes upon which relationships are incident is not restricted. However,
UNIX-style directory structures may easily be constructed using CAlS structural nodes in place
of UNIX directory files. Instead of a UNIX file having pointers to other files as its contents, the
directory is represented using relationships that emanate from the CAIS structural node. eAIS
relationships emanating from a node are designated uniquely by a relation name and a key.

3.1.3. Implications for the Tool Writer

For the tool writer, the issue is one of usability - the simplicity and uniformity of UNIX
versus the generality and added support for file system concepts offered by the CAIS. It is
apparent that the expressiveness added by relationships and by node and relationship attributes
~an be exploited by APSE tool writers. The CArS pro\ide~ a Humber of facilities for manipulat
ing a.nd navigating rela.tions among nodes. and for managing attributes. An obvious benefit to

-279-

the tool writer is that these facilities make it easier to maintain explicit knowledge about the
interdependencies and properties of nodes. For example, a structural node might contain a col
lection of Ada source files for a system under development. There are various ways that these
files might be related (e.g., compilation order dependencies, membership in various subsystems,
version differences). Without the use of secondary relationships, these different relations among
the files may be recorded only in the mind of the system designer, in documentation, or possibly
in other files. The increased accessibility of processes as entities, with relationships and attri
butes that can be referenced by tool writers, is also promising.

The differences in the linking of system structure are important, but there is no loss of
capability, and greater control over node existence is available to the tool writer, through the
CAIS. However, the use of links in the CAIS is less uniform than in the UNIX file system and
linking to a node does not guarantee that a tool can traverse the node (i.e. that it will still
exist) as it navigates the node model as UNIX hard links do.

3.2. Input/Output and Device Control

The input/output issues affecting tool writers involve the ease with which I/O services can
be used, the variety of useful services, the degree of control afforded for devices versus the con
trol needed, and support for correct use of services. Extensibility of the I/O services supported
is important. Table 2 of the Appendix contrasts UNIX and CAIS file and device I/O facilities.

3.2.1. UNIX Input/Output

Generally, UNIX I/O services are presented through a single interface. The user views
files as files regardless of the devices they exist upon. The common interface is employed by the
programmer for all I/O calls. The device driver translates I/O calls to the appropriate device
specific command sequences, using underlying block and character device disciplines. If greater
control of a character device is needed, user calls to ioetl with parameters appropriate for the
device provide it. UNIX also offers additional levels of abstraction for accessing and manipulat
ing certain device classes at a higher level through speciali~ed services (e.g. curses, sockets).

Under UNIX, extending I/O services is a matter of adding device drivers for new device
groups. Device-specific command sequences are simply passed through to the new driver via
ioetl. Thus the UNIX tool writer can exercise direct control over special device features. Incor
poration of the new device driver can be done by simply relinking the kernel and requires only
object level manipulation of the system.

3.2.2. CAIS Input/Output

The CAIS generally presumes a higher level of abstraction; there is little direct control of
devices comparable to the UNDC ioctl call. The trend seems to be a proliferation of device
abstractions, as opposed to the UNIX common model. The CAIS follows Ada in providing a
variety of "access methods" for using devices. Operations corresponding to particular element
types and access disciplines are packaged together. Although the proposed CAIS specification is
weak in this area, it is apparently intended that a file descriptor be used by a single such discip
line.

Uniform conventions for extension of the CAIS I/O model are not in place yet. New pack
ages must be added to the CAIS package specification and to the package body. The CAIS
includes device abstractions for three kinds of terminals (scroll, page, and form) and for mag
netic tapes. Obviously, additional interfaces may be needed for printers, plotters, and various
other special devices. The addition of such interfaces was deferred in the CAIS. The CAIS also
has no facilities for asynchronous or non-blocking I/O. Pragmatic questions exist about what
the mechanism will be for changing or extending the CAIS specification to admit new standard
device classes or access methods. Tha t is, will a CAIS control board rule on extensions, or will
there be an analogue of Appendix F [LRMI for system dependent or local extensions? To pro
mote handling of such extensions through interfaces that conform to the CAIS approach, source
distribution of implementations may be required.

-280-

3.2.3. Implications for the Tool Writer

The uniform set of I/O calls constituting the UNIX ljO interface contributes to ease of
use by the tool writer. For the CAIS tool writer, the CAIS input/output disciplines correspond
to the Ada [LRMj services in both style and semantics, giving access to CAIS file node contents
via all the Ada I/O access methods.

The facilities for direct control of devices in the CAIS are inadequate for the needs of tool
writers. At the least, the tool writer will need to be able to exploit new hardware capabilities
through easy addition of new device interfaces. The recompilation cost of adding interfaces to
the CAIS under its present structure, though a one-time cost, is very high.

3.3. Access Synchronization and Control

The important issues affecting access to file system objects are: what synchronization
mechanisms are there to protect against conflicting concurrent access? And what control
mechanisms are there to restrict the kind of access that is permitted and the users to which
acces~ is permitted? Another issue is the degree to which such services are automatic or user
controlled. Table 3 of the Appendix contrasts UNIX and CAIS access synchronization and con
trol fac ilit ies.

3.3.1. UNIX Access Synchronization and Access Control

UNIX file access synchronization is managed through an advisory locking mechanism with
two classes of locks: shared or exclusive. Requests for locks may be either blocking or non
blocking. Use of the locks is by voluntary cooperation, and access is not prevented by a process
that does not use locks.

UNIX access control depends upon user, group, and public (unrestricted) visibility of files,
where groups of users are defined by the system administrator. Each file has an user owner and
a group owner. Permissions assigned to each of the three roles are drawn from a limited set of
grantable rights: read, write, and execute/search.

3.3.2. CAIS Access Synchronization and Access Control

Synchronization of access to nodes in the CAIS encompasses file nodes, structural nodes,
and process nodes. Protection against conflicting concurrent access is supported for access
intents of finer granularity than UNIX offers. For example, read, write, exclusive write, read
attributes, and write relationships are among the intents that may be requested. These intents
allow varying degrees of synchronization protection, but they are enforced by the CAIS and are
not merely advisory.

The CAIS access control mechanisms are only recommendations, but alternate mechanisms
must provide all the specified interface semantics. The CAIS approach to access control is two
fold, consisting of discretionary and mandatory modes, and is compliant with the 000 Trusted
Computer System Evaluation Criteria [TCSEC]. First, the CAIS provides discretionary access
control based upon the identity of subjects and groups to which they belong. Access can be
granted to roles: users, (program) files, and groups. The CAIS does not restrict the namespace
for grantable access rights, allowing construction of named sets of access rights based upon a set
of CAlS-defined intents. CAIS roles are nodes representing users, programs, and hierarchically
structured groups. This form of access control is roughly analogous to the UNIX enforcement of
file visibility. The second form of access control supported in the CAlS is mandatory access con
trol based upon subject clearances or authorizations and upon classification of sensitivity of the
node to be accessed. Mandatory access control is enforced using a node labeling scheme based
upon predefined node attributes for object and subject classification.

-281-

3.3.3. Implications for the Tool Writer

The CAIS provides more comprehensive synchronization services to the tool writer. This
can be particularly important where separately developed tool sets share some intermediate file
nodes. Advisory locking among tools of a set might be employed, yet interference across tool set
boundaries could occur. With the CAIS, this is not a problem as long as each tool protects itself
against interference. Discretionary access control in the CAIS and UNIX access control
correspond very closely, with additional support for grantable access rights and for structuring
groups in the CAIS. How useful a mandatory access control mode will be for general software
tool development is an open question. However, for DoD software environments, a tool writer
building the project-specific tools of an APSE may require both security modes.

3.4. Process Management

For the tool writer, the process management issues include the facilities available: for pro
cess creation, for control over and access to created processes, and for controling inheritance of
the environment of the created process. Table 4 of the Appendix contrasts UNIX and CAIS pro
cess management facilities.

3.4.1. UNIX Process Management Facilities

UNIX provides a hierarchical process structure with a limited adoption capability and an
inheritance by the child process of parent information in the program data space. The fork sys
tem call creates a child process that is a copy of the current process. The execve system call
can be used by the child process to execute a program file, transforming the copy process into a
new process. The wait system call allows a process to wait for termination of a child process (or
a signal). The _exit system call causes the running subprocesses of the process to be adopted by
the initialization process.

3.4.2. CAIS Process Management F acUities

The CAIS supplies an underlying process structure that is hierarchical. Adoption (or
renaming) of processes is not allowed, but independent jobs may be created with execution not
contingent upon the termination status of the creating process. Process trees persist in the
model, even after termination, and remain subordinate to the user's node. This allows delayed
access to process results. Spawned dependent processes inherit an "environment" of relation
ships from the parent process. Inherited are: relationships to standard and current input, out
put, and error file nodes, relationships to user and device nodes, access control relationships, and
current job, user and node relationships.

CAIS process management facilities include calls to spawn a process that executes con
currently with the caller, to invoke a process that completes before the caller proceeds, to create
a new job (root) process with independent execution, to suspend and resume named processes,
and to wait for an arbitrary process to enter a terminated or aborted state.

3.4.3. Implications for the Tool Writer

A major difference between the CAIS a:nd UNIX is in the information inherited upon pro
cess spawning. A UNIX child process inherits the entire environment of its parent. A CArS
child process inherits only a subset of the relationships and attributes of its parent. The tool
writer will have to explicitly copy other attributes and relations to the new process node. The
tradeoff is one of greater effort versus greater control by the tool writer. The ability to wait for
arbitrary processes (not just child processes) to reach termination in the CAIS should be useful
to the tool writer. The need for UNIX-style adoption should be obviated by the CAIS facility
for creating independently running jobs under a user node. However, an important issue is the
overhead entailed by retaining CAIS process trees for terminated or aborted processes. The
tool-writer will have to explicitly manage the destruction of trees of terminated processes.

-282-

3.5. Interprocess Communication

The principal issues for interprocess communication is what the modes of communication
available to the tool writer are, and what facilities or conventions there are for communicating
arguments. Table 5 of the Appendix contrasts UNIX and CAIS facilities for interprocess com
munication.

3.5.1. UNIX Facilities for Interprocess Communication

UNIX mechanisms for interprocess communication are: signals, pipes, and sockets.
Processes can communicate directly through socket and pipe interfaces, and can asynchronously
signal each other. The UNIX sockets abstraction is a generalization of pipes, and subsumes
them. A socket is a port at which a process may establish a connection and send or receive
messages. The pipe and socketpair calls allow creation of connected ports between processes
that are hierarchically related. Additionally, UNIX sockets provide facilities for explicit control
over network communication. The UNIX argv convention for parameter passing to tools per
mits uniform handling of process arguments.

3.5.2. CAIS Facilities for Interprocess Communication

Interprocess communication is supported in the CAIS through "queue" file nodes that are
similar to VNIX pipes. However, instead of communicating at a socket or port, the queue file
node is opened, then read or written. There is no restriction that processes communicating
through a particular queue file node be from the same process tree or in any other relationship.
Copy and Mimic queues can be created that are initialized from or echoed by file nodes expli
citly coupled with them. Signals are not supported in the CAIS. Explicit support for process
management and interprocess communication across multiple hosts is deferred in the CAIS;
thus, there are no explicit facilities for networking. There is also no established convention for
argument passing in the CAIS.

3.5.3. Implications for the Tool Writer

The importance of asynchronous signaling to the tool writer in managing notification of
processes of external or severe error conditions seems critical. The lack of this mode of interpro
cess communication in the CAIS appears to be a serious drawback. The fifo (UNIX socket and
CAIS queue) communication modes both seem adequate for general tool-tool communication for
processes running on the same processor. The additional linkages to files in the CAIS will be
useful for some tools (e.g. for logging). Distribution is an important issue, though a deferred one
in the CAIS. It remains to be seen how far transparent distribution of the CAIS on a hetero
geneous network (under the present interface) will be possible and what additional control inter
faces may be needed by toolsmiths. Finally, a uniform convention for access to arguments by
processes is needed by tool writers; it might be incorporated into the interface set or provided as
a separate standard.

3.6. Error Detection, Recovery and Diagnosis

The issues for error handling mechanisms are: how well they support detection, how exact
the possible diagnosis is, and what support is available for recovery.

3.6.1. UNIX Error Handling

UNIX interfaces support error detection, diagnosis, and recovery through two mechanisms.
Most system calls have one or more error returns. An error condition is indicated by an other
wise impossible return value (usually -1). A process must explicitly test the value to detect an
error. Typically the only information returned is that something went wrong. The external
variahle "errno" provides more detailed information. In other cases, particularly for fatal
('rrors. signals are llsed to interrupt the calling process.

-283-

3.6.2. CAIS Error Handling

Because the CAIS interface is an Ada language interface, error handling in the CAIS fol
lows the Ada exception paradigm. Detection of an error causes a CAIS exception to be raised.
It is the responsibility of the tool builder to provide handlers for the CAIS exceptions that may
be raised by a CAIS operation. An exception that is not handled in any scope will cause the
program to abort. The Ada exception model is a termination model, and exceptions are not
values. Exception handlers are not parameterized. The CAIS exceptions are not very fine
grained, making diagnosis difficult. This is an area of the CAlS that is under review.

3.6.3. Implications for the Tool Writer

The CAIS error handling model, being more consistent with the Ada model, will probably
prove easier to use. It also offers more services for detection and recovery than the error value
approach. The present granularity of the CAIS error exception offers less support for diagnosis
than do the UNIX "errno" values. A major concern is the criticality of software interrupts for
managing multiple-process tools under severe error conditions.

3.7. Clock and Timer Management

The issue is whether a common "time" capability will be required by tool writers and what
features are needed. Table 6 of the Appendix contrasts UNIX and CAIS time facilities.

3.7.1. UNIX Time Services

UNIX system calls are provided to set and retrieve values from an interval timer and from
the system clock.

3.7.2. CAIS Time Services

The CAIS does not include interfaces for clock or timer support. Predefined attributes of
process nodes, Start_Time, Finish_Time, and Machine_Time, are maintained by the CAIS imple
mentation and are implementation dependent.

3.7.3. Implications for Tool Writers

Time abstractions are common in configuration management tools, DBMS managers, and
"daemon" processes, among others. Portability of these tools across APSEs is compromised in
the absence of a common time mechanism.

3.8. Resource Control and Accounting

The issue is whether uniformity in resource management across APSEs is an important
tool portability question and what the appropriate resource abstractions should be. Table 7 of
the Appendix contrasts C'l\'IX and CAIS resource management facilities.

3.8.1. UNIX Resource Management

UNIX provides resource accounting and a quota m·.:chanism for certain resources. The
CAIS includes only minimal support for accounting, specifically, predefined file and process attri
butes that may be used by an implementation to record file size, [/0 transactions, and process
times.

3.8.2. CAIS Resource Management

There are few CAIS calls for resource management. Predefined attributes Start_Time,
Finish_Time, and Machine_Time of CAIS process nodes can be used in resource management.
User attributes and relations could be used for resource control facilities built on top of the
CAIS.

-284-

3.8.3. Implications for the Tool Writer

Resource management for tool development environments is closely related to the question
of project management. It may be more appropriate from the APSE point of view to provide
the resource control mechanisms in that context, above the level of system calls.

3.9. System Administration

The issue is whether system administration functions are needed by APSE tool writers.
Table 8 of the Appendix contrasts Ul':IX and the CAIS with respect to system administration
facilities.

3.9.1. UNIX System Administration

Cl"IX provides system calls that allow rebooting of the system, mounting and unmounting
of file systems by a system administrator. It also provides interfaces through which the user can
access system parameters, such as system page size. A special user id is designated as the
"superuser" with unrestricted access rights to system objects.

3.9.2. CAIS System Administration

The CAIS does not include a concept of "CAIS reboot" and does not provide for mountable
file systems. Implementation pragmatics, defining minimum support parameters an implementa
tion must provide are specified, but system calls for values characteristic of the underlying
implementation are not provided in the C.-\IS. There is no explicit CAIS "superuser" concept,
but a "superuser" access control role could be provided in an implementation.

3.9.3. Implications for Tool Writers

The CAIS explicitly states that certain functions, such as addition of users, are outside the
CAIS. This identifies certain aspects of system administration as being outside the purview of
the tool writer and not to be included in an interface set for tool support. It is not likely that
the omission of these features from the CAIS will impact the capabilities needed for construction
of APSE tools.

4. SUMMARY

Although there are large areas of correspondence, UNIX and the CAIS provide differing
support to the tool builder in each of the areas of file system structures, input/output and dev
ice control, process management, error detection, recovery and diagnosis, access control and syn
chronization, interprocess communication and networking, time facilities, resource control, and
system administration. Ul\iIX appears to provide generally more complete support for
input/output and device control, for network communication, for resource control, and for sys
tem administration. The CAIS supports more general file system structures, is more consistent
(though perhaps more limited) in its error handling model, and offers greater support for access
synchronization and control. Process management is better supported by UNIX in some
respects, (particularly interprocess communication), and in others (process structuring) by the
CAIS.

Beyond the technical comparison given, there are additional issues which will affect the
usefulness of the CAIS or any other standard operating system interface. The early and con
tinuing success of UNIX has been promoted by the collection of tools distributed with the
operating system. The CAIS has no such tool set. However, collections of Ada tools are being
assembled. Our experience so far indicates that hosting existing Ada tools on the CAIS is not
difficult. As new tools that exploit the capabilities of the CAIS are built, a more complete
evaluation will become possible.

[MITRE]

[ULTRIX]

[STONEMAN]

[LRM]

[CAIS]

[TCSECj

-285-

BIBLIOGRAPHY

Bowerman, Rebecca and Charles Howell, "A Comparison of the UNIX System
Calls to the CAlS," MITRE WP-84W00467, The MITRE Corporation, McLean,
Virginia, September 28, 1984.

Digital Equipment Corporation, ULTRIX-9f Programmer's Manual, May 1984.

United States Department of Defense, Requirements for Ada Programming Sup
port Environments, STONEMAN, February 1980.

United States Department of Defense, Reference Manual for the Ada Program
ming Language, ANSI/MIL-STD-1815A-1983, February 17,1983.

United States Department of Defense, Military Standard Common APSE Inter
face Set (CAIS), (Draft) Proposed MIL-STD-CAIS, January 31, 1985.

United States Department of Defense Computer Security Center, Department of
Defense Trusted Computer System Evaluation Criteria, CSC-STD-00l-S3, August
15, 1983.

APPENDIX

Table 1. File System Facilities

aSD 4.2 CAIS Comments

close Node-Management.Close BSD: delete a (file) descriptor. CAIS:
delete node handle.

creat Text_IO.Create, aSD: create a new file. CAIS: file,
Direct_Io.Create, structural, and process nodes are
SequentiaLlo.Create, c'reated by corresponding packages.
StructuraLNodes.Create,
Process_Control.Spawn_Process,
P rocess_Control.lnvokeYrocess,
Process Control.Create Job

link Node-Management.Link aSD: make a hard link to a file. CAlS:
creates a secondary relationship to a
node.

mkdir StructuraLNodes.Create_Node BSD: make a directory file. CAIS:
create a structural node.

mknod Text_Io.Create aSD: make a special file. CAIS: create
SequentiaLlo.Create a queue file node for interprocess com-

munication; device nodes are added
through a mechanism outside the CAIS.

-286-

Table 1. File System Facilities (Continued)

BSD 4.2 CAIS I Comments

mount, No equivalent BSO: mount or remove file system.
unmount CAIS: there is no concept of a remov-

able file system.

open Node_Management.Open BSD: open a file for reading or writing,
or create a new file. CAIS: open a han-
dle to an existing node to allow access
to its attributes or relationships.

readlink No equivalent BSD: read value of a symbolic link.
CAIS: symbolic links are not supported.

rename Node_Management.Rename BSO: change the name of a file. CAIS:
change the primary (and parent) rela-
tionships of a node.

rmdir Node-Management.Oelete_Node j BSO: remove a directory file. CAIS:
delete a (structural) node.

stat, Node_Management.Kind BSO: get file status, get file or symbolic
lstat, attributes: link status, get open file status. CAIS:
fstat Node_Kind, File_Kind, IPartially supported through predefined

Queue_Kind, TerminaLKind attributes and relationships.
relationship:

Access

symlink Not supported BSO: make symbolic link to a file.
CAIS: symbolic links are not supported.

unlink Node-Management.Unlink BSO: remove directory entry. CAIS:
delete a secondary relationship to a
node.

Table 2. File and Device I/O

aso 4.2 CAIS Comments

close Text_Io.Close BSD: delete a (file) descriptor. CAIS:
Direct_Io.Close delete a file handle to a file node.
SeQuentiaLlo.Close

creat Text_Io.Create aSD: create a new file. CAIS: create a
Direct_Io.Create file node and return an open file handle
Sequential lo.Create to the node.

dup, No equivalent BSD: duplicate a file descriptor. CAlS:
dup2 management of file handles is not expli-

cit; copying is not permitted.

-287-

Table 2. File and Device [/0 (Continued)

BSD 4.2 CAIS Comments

fcntl
F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL

FNDELAY
FAPPEND
FASYNC

F_GETOWN
F_SETOWN

No equivalent
No equivalent
No equivalent

No equivalent
Append_File mode
End_OLFile function
No equivalent
No equivalent

88D: file descriptor control.
CAIS: no copying of file handles.

open file handles are not inherited.
open file handles are not inherited.

no non-blocking I/O.
can append to sequential, text files.
no SIG10, must test.
no SIGIO uid or gid equivalent.

: no SIGIO uid or gid equivalent.

I BSD: control device. CAIS: separate I
pac kages support specific functionality
for classes of devices.

Not supported

10_Control.Synchronize

package ScrolLTerminal
package Page_Terminal
package Form_Terminal
package Magnetic_Tape

ioctl

getdtablesize

fsync !880: synchronize a file's in-core state

I

I with that on disk. CAIS: forces all data
that has been written to the internal

I
file to be transmitted to the external
file with which it is associated.1----------+-----.---------

IBSO: get process's file descriptor table
I size. CAIS: file handle space is imple-
: mentation dependent.

lseek

open Text_Io.Open
Direct_Io.Open
SequentiaLIo.Open

B8D: move read or write pointer.
CAIS: read or write position can only
be directly manipulated from Direct_Io.

880: open a file for reading or writing,
or create a new file. CAIS: open a file
node for access to contents. File node is
not au.tomatically created if it does not
exist.

read,
readv

Text_Io.Get
Direct_Io.Read
SequentiaLlo.Read
ScrolLTerminal.Get
Page_Terminal.Get
Form Terminal.Get

880: read input, scatter read input.
CAIS: read file node contents, no
scatter read, unbuffered terminal I/O
get.

truncate No equivalent 8S0: truncate a file to a specific length.
CAIS: Not supported.

write,
writev

Text_Io.Put
Direct_Io. \Vrite
Sequen tiaLIo.Write
ScrolLTerminal.Put
Page_Terminal.Put
Form_Terminal.Put

B8D: write on a file, gather write.
CAIS: write file node contents, no
gather write, unbuffered terminal I/O
put.

-288-

._----
Table 3. Access Synchronization and Control

I

I

BSO 4.2 CAIS Comments I
i

access Access_Control.Is_Granted BSO: determine accessibility of

~~:Iaccording to mode. CAIS: check
approved access right.

chmod Access_ControI.Set..Access_Control BSO: change mode of file. CAIS: create!
Access relationship from object node toi
role.

chown Access_ControI.Set..Access_Control BSD: change owner and group of a file.
CAIS: create Access relationships, which
can have Grant attribute value of Con-
trol.

flock Node_Management.Open BSD: apply or remove an advisory lock.
CAIS: Intent parameter on Open call is
used for synchronization arbitration;
not advisory.

:getgid. Create a node iterator over BSO: get group identity, get effective
!getegid IAdopted_Role relationships group identity. CAIS: roles are targets

of Adopted_Role relationships emanat-
ing from process node.

getgroups No equivalent IBSD: get user's group access list. CAlS:
Ino interface for interrogating
IPotentiaLMember relation over all
groups.

getuid, Current_User relationship BSO: get real user identity, get effective
geteuid user identity. CAlS: target node is user,

node upon which process tree depends.

setgroups Potential-,"\1ember relation BSO: (superuser) set group access list of
current user process. CAIS:
PotentiaLMember relation from group
structural node to role held by process
governs role adoption.

~etregid Access_Con trol.Adopt BSO: set real and effective group ide
Access_Control.Unadopt CAIS: adopt or unadopt role, with

attendant access rights to objects.

jetreuid No equivalent BSO: set real and effective user ids.
CAIS: there is no interface to change

I
the Current_User relationship of a pro-
cess.

umask Access_Control parameter of BSD: set file creation mode mask.
Create subprograms CAIS: default Access_Control parame-

ter for node creation is null.

-269-

Table 4. Process Management

aSD 4.2

chdir

execve

CAIS

Set_Current_Node
in package Node_Management

No exact equivalent
(Spawn_Process,
Invoke_Process,
Create_Job
in package
Process_Management)

No equivalent

Comments

BSD: change current working directory.
CAIS: change CurrenLNode relation
ship of current process.

BSD: execute a file. CAIS: CAIS
processes do not change into new
processes, but all process creation calls
exec ute a file image.

aso: terminate a process. CAIS: no
explicit call; termination of Ada main
program sets process state to Ter
minated.

fork Spawn_Process,
InvokeYrocess
in
Process_Managemen t

package

BSO: create a new process.
create new CAIS process
SpawnYrocess is asynchronous
Invoke_Process is synchronous
wait).

CAIS:
node.

(fork);
(fork,

getpgrp

getpid,
getppid

kill,
killpg

profil

ptrace

setpgrp

syscall

vfork

vhangup

Current_Job relation

":"', Parent relationship

Suspend_Process,
ResumeYrocess,
Abort_Process
In

Process_Management

No equivalent

No equivalent

No equivalent

No equivalent

No equivalent

No equivalent

aso: get process group. CAIS: no pro
cess group concept in CAIS;
Current_Job target is root process node
of process tree.

BSO: get process identification. CAIS:
pathname ":" denotes current process
node; target of Parent relationship is
parent process node.

aso: signals are used to alter process,
process group status. CAIS: change
status of process and all dependent

package processes.

BSD: execution time profile. CAIS: not
supported.

aso: process trace. CAIS: not sup
ported.

aso: set process group. CAIS: no con
cept of process group in CAIS.

aso: indirect system call. CAIS: Not
supported.

aso: spawn new process in a virtual
memory efficient way. CAIS: not sup
ported; an artifact of UNIX memory
management.

BSD: virtually hangup the current con
trol terminal. CAIS: no provision for
hanging up terminals is made.

-290-

wait, AwaitYrocess_Completion aso: wait for signal or for child process
wait3 (InvokeYrocess) in package to terminate. eAls: wait for process

Process-Management associated with node to terminate or
abort.

-291-

t·cT bl 5 I ta e . n erprocess ommunlca Ion
I

BSO 4.2 CAIS CommentsI

accept No equivalent BSO: accept a connection on a socket.
CAIS: no explicit networkin~ facilities.

bind No equivalent BSO: bind a name to a socket. CAIS:
no explicit networkin~ facilities.

connect No equivalent BSO: initiate a connection on a socket.
CAIS: no explicit networking facilities.

dup, Text_Io.Open, BSO: duplicate a descriptor. CAIS:
dup2 Queue file node management of descriptors for

multiple-access Queues is not explicit.

gethostid, No equivalent BSO: get unique identifier of current
sethostid host, set unique identifier of current

host. CAIS: no explicit networking
I facilities.

Igethostname, No equivalent BSO: get name of current host, set
!sethostname name of current host. CAIS: no explicit
I networkin~ facilities.

jgetpeername No equivalent aSD: get name of connected peer.
CAIS: no explicit networking facilities.

getsockname No equivalent aSD: get socket name. CAIS: no expli-
cit networking facilities.

getsockopt, No equivalent aso: get options on sockets, set options
setsockopt on sockets. CAIS: no explicit network-

in/l; facilities.

kill No equivalent aso: send signal to a process. CAIS: no
generalized signaling facilities.

killpg No equivalent BSD: send signal to a process group.
CAIS: no ~eneralized siJ~nalin~ facilities.

listen No equivalent BSO: listen for connections on a socket.
CAIS: no explicit networking facilities.

pipe Text_Io.Create aso: create an interprocess communica-
SequentiaLIo.Create tion channel. CAIS: create a file node

·~f File Kind Queue.

recv, No equivalent BSO: receive a message from a socket.
recvfrom, CAIS: no explicit networking facilities.
recvms~

select No equivalent aso: synchronous i/o multiplexing.
CAIS: Not supported.

send, No equivalent BSO: send a message from a socket.
sendto, CAlS: no explicit networking facilities.
sendmsg

shutdown No equivalent aso: shut down part of a full-duplex
connection. CAIS: no explicit network-
ing facilities.

sigblock No equivalent aso: block signals specified in mask I

from delivery. CAIS: no async hrononsI
signaling facilities.

-292-

Interprocess Communication (Continued)
I

Table 5.

BSD 4.2 CAIS I Comments

sigpause No equivalent BSD: atomically release blocked signals
and wait for interrupt. CAIS: no asyn-
chronous si~nalin~ facilities.

sigsetmask No equivalent BSD: set current signal mask. CAIS: no
asynchronous signaling facilities.

sigstack No equivalent BSD: set and/or get signal stack con-
text. CAIS: no asynchronous signaling
facilities.

sigvec No equivalent BSD: software signal facilities. CAIS: I
no asynchronous signaling facilities ..

I (Also, Ada has no subprogram vari-
!ables, values.)

socket No equivalent BSD: create an endpoint for communi-
cation. CAIS: no explicit networking.

I facilities. I
socketpair No equivalent IBSD: create a pair of connected socketsol

: CAIS: no explicit networking facilities.

Table 6. Clock and Timer Management

BSO 4.2 CAIS Comments

getitimer No equivalent BSD: get value of interval timer. CAIS:
duration parameters allow timeout dur-
ing node open; no explicit control of
timer.

gettimeofday No equivalent BSD: get date and time. CAIS: no
calendar abstraction provided.

setitimer Time_Limit parameter of 8SD: set value of interval timer. CAIS:
Node.-Management.Open duration parameters allow timeout dur-

ing node open; no explicit control of
timer.

settimeofday No equivalent BSD: set date and time. CAIS: Not
supported; see ~ettimeofday.

utimes No equivalent BSO: set file times. CAIS: support for
capturing file creation and modification
times is not provided.

-293-

Table 7. Resource Management

BSD 4.2 CAIS Comments

acct No equivalent BSD: (superuser) turn accounting on or
off. CAlS: explicit accounting control is
not supported.

brk, sbrk No equivalent BSD: change data segment size. CAlS:
explicit memory management is not
supported.

getpriority No equivalent BSD: get program scheduling priority.
CAIS: priority scheduling is not sup-
ported.

getrlimit No equivalent BSD: get maximum system resource
consumption. CAlS: limitation of
resources is not supported.

getrusage Machine_Time attribute of pro- BSD: get information about resource
cess nodes. consumption. CAIS: implementation-

dependent record of process execution
duration; otherwise no support for
resource tracking.

quota No equivalent BSD: manipulate user's disk quotas.
CAIS: limitation of device or object
resources is not supported.

setpriority No equivalent BSD: set program scheduling priority.
CAIS: Not supported, see getpriority.

setrlimit No equivalent BSD: set maximum system resource con-
sumption. CAIS: Not supported, see
getrlimit.

setquota No equivalent BSD: (superuser) enable/disable quotas
on a file system basis. CAIS: Not sup-
ported. see Quota.

Table 8. System Administration

aso 4.2 CAlS Comments

chroot No equivalent aso: (superuser) change root directory.
OAlS: no interface provided for access
to system level node.

getpagesize No equivalent aso: get system page size. OAlS: no
concept of virtual memory manage-
ment.

reboot No equivalent aSD: reboot system or halt processor.
CAlS: no concept of "OAlS reboot:'

swapon No equivalent aso: add a device for interleaved
paging/swapping. OAlS: no concept of
virtual memory manaJtement.

sync No equivalent aso: update super-block OAlS: nothing
comparable-- this is an artifact of the
implementation of UNIX IjO.

SVID As A Basis For CAIS Implementation

Herman Fischer!
Mark V Business Systems

16400 Ventura Boulevard
Encino, CA 91436

(818) 995-7671
{ihnp4, decvax, randvax} I hermix I fischer

HFischerCisif.arpa

1. Introduction

The Common Ada Programming Support
Environment (APSE) Interface Set2 (CAIS) is
a set of interfaces, defined in Ada3, which
promote the transportability of software
development tools, and which enhance the
ability to move project development data
bases between CAIS implementations. These
interfaces support large scale programming
projects, such as are encountered in mission
critical Defense Department computer sys
tems work.

This paper examines CAIS as it relates to the
System V Interface Definition, SVID (and
UNIX 4 as a particular implementation of
SVID). The paper begins by exploring why
the CAIS effort exists, its goals, and the
solutions it attempts to achieve which are
not in todays implementations of "vanilla
UNIX". Next, the paper examines the anti
cipated user community and why it is
presumed to want CAIS. The functionalities
present in the current version2 and the func
tions left for later versions are identified.
Two means of implementing CAIs-like func
tionality on host systems (such as UNIX) are
identified; present implementations of CAIS
are categorized and discussed. Finally, a
comparison is made between CAIS and the
European Portable Common Tool Interface

1. Mr. Fischer is chairman of the KAPSE Interface
Team from Industry and Academia, and
participated in the development of the CAIS.

2. Proposed MIL-STD CAIS, Common Ada
Programming Support Environment Inter/ace Set,
Department of Defense, Ada Joint Program Office,
January 1985.

3. Ada is a registered trademark of the U.S.
Government, Ada Joint Program Office.

4. UNIX is a trademark of AT&T Bell Laboratories.

(PCTE) project, possibly one of the most
ambitious and CAIs-like UNIX extensions
under way.

2. Goals of CAIS

2.1 Tool Transportability and Interoperabil-
ity

The primary goal of CAIS is to solve a per
ceived problem in 000: a lack of tool tran
sportability and interoperability facilities (1)
among defense system support contractors,
(2) between contractors and the Govern
ment, and (3) between Government entities
themselves. (The UNIX aficionado might
feel that he has had the answer to these
sorts of problems for years; he must be
reminded, however, that neither the
Government nor its contractors have histori
cally been big fans of UNIX systems, mostly
because of the inability to support program
ming in the very large on what were histori
cally small-sized UNIX systems.)

The Government is expected to spend, this
year, over $13.54 Billion on mission-critical
computer software5 (not including business
and accounting applications). At typical
rates of expenditures, over 126,000 software
people work on over 500 defense projects
(supported by many other categories of
non-software labor). Several of the projects
include software deliveries of the tens of
millions of source lines. This code is
expected to be maintained for the lengthy
lifetime of military equipment; thus the abil
ity to have many teams work on parts of the
job, at differing support sites over the

5. IIDoD Computing Activities and Programs, Ten
Year Market Forecast Issues 1985 - 1995",
Electronic Industries Association, October 1985.

-295-

SVID As A Basis For CAIS Implementation

system lifecycle, is important. (Large pro
jects are often developed by several organi
zations and maintained by others. This
entails a variety of computers and operating
systems, and moving the project
database/ filesystem.)

The CAIS itself focuses on the support of
software tools, in development environ
ments. It is not intended to be a real-time
or applications-supportive system, though
several have suggested that CAIS facilities
may apply to non-development applications
too.

The CAIS currently defines an advanced
filesystem (database), a process model, a
security model, some device control, and
some access synchronization. The difficult
issue of data interoperability is a deferred
item for the CAIS authors to tackle.

2.2 Defined in Ada

The CAIS is defined in Ada, and is intended
to support tools written in the Ada language.
Many of its interfaces appear in an Ada
style, using strong typing, overloaded pro
cedure call selection, and Ada-like packag
ing. There was no attempt or concern to
support previous languages when CAIS was
first defined; however, current interest in
compatibility with other languages may
influence CAIS implementations to support
prior-generation languages.

2.3 Evolved from APSE Concept

In the late 1970's, Ada environment
research developed the concept of a
development environment architecture
based on a layered model. Called the Ada
Programming Support Environment (APSE),
this model is shown in figure 1.

The core of the APSE is the Kernel APSE
(KAPSE). It's purpose was considered novel,
to encapsulate differing host machine and
operating system capabilities into kernels
which all had a common interface to higher
level tools and user programs. The KAPSE
included such general system services as file
management, process control, device con
trol, and hardware resource control.

Surrounding the KAPSE in the original
models, is the Minimal APSE (MAPSE), a
layer with "coding" tools such as editors,

Figure 1. APSE Structure

compilers, linkers and command inter
preters. Current thought focuses more on
the need for an APSE to support the entire
life cycle of software. This extends the sup
port environment beyond coding tools, with
such facilities as requirements analysis and
design support, test support, management
support, and the like. However, in the ori
ginal model, these features were considered
project unique tools and relegated to the
APSE layer of the model.

The important contribution of this model is
the idea that a kernel (KAPSE) can be
defined with standardized interfaces so that
low level tools (e.g., language compilers) and
high level tools (e.g., project support and
configuration management) can l)e indepen
dent of specific underlying hardware and
host operating system software.

2.4 Influenced by UNIX

CAIS has been strongly influenced by UNIX.
Many defense projects are still hosted on
flat-filesystems, such as IBM's 370 series
operating systems. The CAIS designers felt
the need to provide more advanced filesys
tern support. UNIX was seen as a model for
filesystem ideas and for process control.
Though UNIX was considered more
advanced than many defense project
environments in use, it too was perceived to
have shortcomings in the area of supporting
large projects. This lead to the more gen
eraillode model in CAIS.

-296-

SVID As A Basis For CAIS Implementation

Fitting UNIx-like process concepts into Ada
was not straightforward. Ada implies a
tasking rendezvous model, which permits
only synchronous parallelisms, and then
only when the parallel parts are all compiled
and linked together. UNIX, on the other
hand, permits asynchronous parallelisms,
connected by pipes and other vehicles,
where each process lives in its own address
space and protected from the other.
Resolving these philosophical differences
was not easy.

2.5 Why Ada alone (without CAIS) is not
enough

With the C language, a portion of UNIX (C
library) is required to augment the machine
independent portion of C with sufficient
fun~tions to be useful in an operating
enVlfonment. Ada must also be augmented
with functions, at least in the host system
environment, because it too lacks tool sup
port functions (of the sort provided by
UNIX). Two key features absent from Ada
are the underlying model of the system level
data, and the ability to support dynamic
binding (process control). The CAIS defines
a node model (file system model) and a
?ynamically bound model for multiple
Independent programs to inter-react as
processes in real time. CAIS augments Ada
with some of the (library-level) functions
found in UNIX. CAIS does not define all the
tool interfaces found in UNIX, and it does
not define any accompanying utility pro
grams, user shells, and the sort of functions
expected of UNIX distributions.

3. Who will use CAIS

The CAIS will appeal to suppliers, custo
mers, and projects beset with the
Government's problems: namely, supporting
multiple teams of software tool users on dif
ferent host products, over a lengthy
software system lifecycle. It is unlikely to
appeal to developers of strictly single-user
products (such as single-user Personal Com
puter software), developers of products
which require hardware lock-in in order to
protect their market, or developers of
closed-architecture products who feel ease
of integration of foreign software products
erodes their market position.

3.1 Tools and tool builders

Most tool builders today strive to support a
broad base of customers on a broad class of
hardware. Indeed, the popularity of UNIX
implementations is due to this phenomenon.
CAIS carries the UNIX notion of indepen
dence further, into the Ada domain and. 'tnto a domain of a more sophisticated data-
base capable of supporting programming in
the large. CAIS may initially appeal pri
marily to Government contractors, and to
tool builders supplying that marketplace.
However, the near equivalence of non-Ada
efforts, such as the European Esprit
Program's PCTE project, supported by
several SVID implementations for the indus
trial and commercial (non-Government)
market, lends credence to the need for
CAIs-like system functionality.

3.2 Project environments

Large programming environments need
strong configuration management the abil
ity to support heterogeneous host; with the
same tool base, and the need to support
their tool base over a lengthy time period.
During the maintenance of the software one
is likely to see four or five hardware ge~era
tions, and expected reprocurements of sup
port equipment. CAIS makes Ada tools
independent of hardware and underlying
host OS changes.

4. What's the Present CAIS

4.1 Node model including processes

UNIX supports its users with a strictly
hierarchical filesystem. For example figure
2 shows a typical user-oriented hierarchy.

Figure 2. User hierarchy of files

Most implementations of UNIX use the
directory structure to support users. Figure

-297-

SVID As A Basis For CAIS Implementation

Figure 3. Network of relationships

While present UNIX distributions do not
support non-hierarchical linkages or inter
filesystem linkages, some SVID extensions,
such as PCTE, provide the same type of sup
port. In general, the model underlying CAIS
is one of a set of entities (e.g., tools, users,
files) and their interrelationships. These
may be depicted as a directed graph of
nodes and edges, where the nodes represent
file, device, directory, or process objects;
and the edges denote relationships.

A database schema for the node model is
shown in figure 4.

with

An important attribute of the CAIS is that
processes are part of the node model. (This
is similar to an enhancement to the experi
mental Eighth Edition of UNIX which has
processes in the filesystem namespace.)
With processes as named nodes in CAIS, one
can have relationships between processes,
between processes and file/directory nodes,
and between processes and nodes for the
implementation of security access models.

4.2 Terminal and Device control

CAIS defines input/output for the nodes
(filesystem), as well as for terminals and
tape devices. Terminals are supported as
character imaging devices at present. CAIS
provides support for three types of termi
nals: scrolling terminals, page-mode termi
nals, and forms-mode terminals. Scrolling
terminals are basically teletype-like devices
which have no cursor control. Page termi
nals have full screen capabilities and are
equivalent to the common ANSI type of ter
minal (e.g., vt100). Forms terminals display
fixed field menus, and receive changes to
data fields, similar to some of the IBM 327x
style devices.

Only rudimentary device control has been
provided. For tapes, the operations pro
vided allow the CAIS to support file creation
for transport between CAIS host systems.
The interfaces handle labeled and unlabeled
tapes.

4.3 Security Model

CAIS provides two kinds of security access
control: mandatory and discretionary. Man
datory controls, equivalent to the conven-
tional hierarchy of UNCLASSIFIED,

Figure 4. Database schema for CAIS node model

project domainwer domain

2 shows two users, mary and joe, each with
their independent hierarchy of files,
independent of the work assignments and
project considerations. For example, joe
has a project directory, with a source direc
tory for three programs (and presumably
also has binary and test program directories
for the same). Another hypothetical direc
tory might include documentation. Whether
mary is working on the same project or not,
the files under her control would be in her
own directory hierarchy.

CAIS supports building secondary networks
of relationships, such as project directories
with logical connection paths. Shown as
curved arcs in the following figure, are a set
of links from logical components to an own
ing project (regardless of which user owns
them). Relationships can cover a number of
logical connections, such as project owner
ships, project version relationships, and the
like (in a far more complex manner than in
figure 3).

-298-

SVID As A Basis For CAIS Implementation

CONFIDENTIAL, SECRET, and TOP SECRET
identify the operations of reading, writin~,
and reading/writing by a classifying node.
Discretionary controls, equivalent to the
UNIX style of user/group/other
read/write/execute bits, limit the authorized
access of proccss nodes (executing pro
grams) (subjects), to other nodes (e.g., file
nodes) as objects. Unlike UNIX, access is
not controlled by storing a pattern of bits
and maintaining user and group id's.
Instead certain relationships are defined to
other nodes to determine a node's role.
Typical operations such as set-user-id are
replaced by a specific process having secon
dary relationships such as onc known as
ADOPTED-ROLE.

5. What's Not in present CAIS

CAIS does provide many of the cquivalent
functions of SYID'S system calls (UNIX
manual chapter two); namely, typical
kernel-level system services. In addition,
some of the library functions (UNIX manual
chapter three) are provided.

CAIS does not at present provide a number
of deferred items. These include:

• Database Schema and Entity Typing
methodology. Currently deferred is a
decision whether or not the CAIS should
enforce a particular typing methodology
and what types of CAIS interfaces should
be available to support it. Typing could
range from simple schema representation
of allowed relationships for classes of
node linkages to a comprehensive con
trol of process access to nodes depend
ing on rules.

• Distribution. The existing definition of
CAIS is intended to be implementable on
a distributed set of processors, but in a
manner which is transparent to CAIS
interfaces.

• Advanced User Interfaces. The current
CAIS does not provide interfaces for the
establishment of windows or bit mapped
displays.

• Inter-tool interfaces. The current CAIS
does not proscribe the formats of data
between tools, nor does it provide any
interoperability data interfaces. The

equivalent of SYID file formats (UNIX
manual chapter 5) has not been deter
mined.

• Configuration management and archiv
ing. The current CAIS interfaces support
tools which implement configuration
management or archiving, but there is no
proscribed underlying model for such
tools to follow. In a sense this is similar
to the current situation with UNIX imple
mentations, where sites individually
determine tools and procedures to follow
in this regard. There is an effort under
way to expand CAIS to include version
control.

6. How to implement CAIS

There are two ways to provide implementa
tions of the CAIS: a native implementation
within a kernel (where the CAIS is or
becomes part of the host operating system),
or a piggyback implementation on top of a
host operating system or kernel. There are
prototypical examples of both forms of
implementation at present.

6.1 Kernel implementation

The only project under way which is in this
category is the European implementations
of PCTE, as modifications to UNIX System
V.2 (see section 6.3). The implementations
currently do not support Ada or Ada inter
faces; however, the "c" interfaces provided
will be shown to map cleanly into CAIS ser
vices. A CAIS implementation on top of
PCTE would use Ada library routines, which
translate the Ada interfaces of CAIS into
underlying PCTE kernel services. This
would not be called piggyback because the
low level services in the kernel provide a
significant portion of the functionality of the
node model, without relying on superim
posed user-state software to implement it.

6.2 Piggyback implementation

A piggyback implementation of the CAIS
might be schematically shown as in figure 5.
When implemented on a UNIX environment,
the CAIS implementation exists primarily as
user-state coding, generally without any
changes to the underlying kernel. Either
shared common processes can be used for
the CAIS implementation or purely user-

-299-

SVID As A Basis For CAIS Implementation

linked coding. Two firms implementing
CAIS by this technique are Mitre and Gould.

tool tool
~ompile, 8et 6et

A B

CAIS

Host Computer Sy6tem
Host Operating Sy6tem

Figure 5. Piggyback CAIS implementation

6.3 PCTE

PCTE will be introduced and compared to
CAIS because of two relevant points: it
exists as SVID extensions, and it provides a
significant part of CAIS functionality in a
kernel-level implementation.

PCTE is both an interface set and a proto
type implementation.

• As an interface set, PCTE exists as a set
of man pagesG

, which describe the PCTE
node model, transaction processing
model, distributed processing interfaces,
and user interface primitives (windowing
and locator device support).

• As a prototype implementation, PCTE
exists as a UNIX System V kernel exten
sion, scheduled for test in 1986. A
second implementation, known as
Emeraude, seeks to provide a production
quality version. The PCTE prototype is
part of the EEC Esprit Program, and
Emeraude is a French national project.

An additional implementation of PCTE in
Ada is scheduled to be performed by
Olivetti as a piggyback-styled implemen
tation intended to be portable on a
variety of hosts and processors.

6.3.1 SVID Extensions

PCTE implements a physically distributed
database of objects, with a logically

6. PCTE, A B48i6 lor a Portable Common Tool
Enmronment, Functional Specifications, Third
Edition, BULL (France) et al., 1985.

distributed kernel. Figure 6 shows how
three workstations might share a logical dis
tributed kernel. In this example each works
tation has some portion of the database
objects physically resident in its own
hardware, under the control of its own local
kernel, but has transparent access to all
other objects of the system-wide (homo
geneous) database.

In Figure 6, VI represents the User Inter
face software function of a workstation;
objects represent database files and attri
butes stored locally on a workstation; and
IKe prot. represents the inter-kernel com
munications protocol.

kernel

distribution

Figure 6. Distributed Kernel and Data Base

PCTE extends SVID V.2 in four logical areas.
These are

1. Basic Mechanisms. The basic mechan
isms' logical components are execution
primitives, communications primitives,
and inter-process communication
primitives. The execution primitives,
for process and context management,
operate on a transparently distributed
environment of heterogeneous works
tations. The communication primi
tives provide the transparent access to
distributed objects (replacing SVID
filesystem primitives). The inter
process communication primitives
implement piping, messages, and
shared memory on a transparently dis
tributed environment. One can start a
pipeline, where pipe processes are
physically separated on different

-300-

SVID As A Basis For CAIS Implementation

workstations, and their objects again
on different workstations.

2. Object Management System (OMS).
The OMS implements PCTE'S
equivalent of the CAlS node model. It
is an Entity-Relationship model, based
on a schema with typed nodes, attri
butes, and relationships (but without
type-checking on process usage of OMS
objects). The Schema is partitionable,
so that logical views supportive of user
or project needs can be implemented,
and control of object relationships can
be regulated. (E.g., an object program
could have a derived-from relationship
to a source program but not a mailbox
file.) The OMS replaces the entire typi
cal SVID filesystem, providing compati
ble interfaces so that binary code
capability is retained for old programs
ported to the PCTE implementation. It
also adds support for the node model,
relationships and attribute mainte
nance, and transparent distribution of
objects.

The PCTE OMS also provides con
current access synchronization, both
in the form of simple locking and tran
saction commit/abort support (e.g.,
rollback of object, relationship, and
attribute status to state prior to com
mit action if a transaction sequence is
aborted).

3. Distribution. PCTE supports fully tran
sparent process and object distribu
tion. It does this with only two primi
tives in the entire PCTE definition
which explicitly reference network
nodes (for explicit starting of a process
on a specific workstation in the case
where several may qualify for execut
ing a certain process).

4. User [me/face. The User Interface
functions of PCTE implement a over
lapped windowing system, using
mouse-like locator devices, on bit
mapped terminals. The physical ter
minal interfaces, in one implementa
tion, with a User Agent function,
which interfaces to applications agents
for each running process. Processes
can either have an active window on

the screen or be iconized (replaced by
a symbol). The Applications Agent
provides a virtual terminal for the
application, so that user-state programs
need not deal with window manage
ment.

6.3.2 PCTE and CAIS

PCTE is similar to CAIS in a number of areas:

• The node models are nearly identical.

• The relationship models are very similar.

• Attributes are handled in a similar
manner, though schema typing in PCTE
causes some practical attribute handling
differences from CAIS implementations
without schema support and attribute
typing.

• The Process model can be installed in a
similar way. Though PCTE implements
processes in the manner of System V.2
(e.g., processes are identified by identifi
cation numbers which are integers),
there is precedence in experimental
implementations of UNIX Eighth Edition
to make Processes part of the filcsystem
"name space". PCTE could either inherit
the mechanism of that UNIX version, or
it could use a library routine (outside of
the kernel) to implement processes as
special types of nodes.

Ada tasks, both on PCTE and on conven
tional SVIO implementations, are
expected to be implemented by compiler
libraries which place all linked tasks for
a given Ada program as a single (or set
of) SVID processes. In general, it is
doubtful that separate tasks can be
represented by independent processes;
thus the process model of CAIS can be
made to correspond directly to the pro
cess model of PCTE and SVIO.

• Finally, Ada implemented I/O should be
the same on both PCTE and CAIS imple
mentations, because in order to validate
a given compiler, one must consistently
provide Ada I/O regardless of the
underlying host implementation.

PCTE and CAIS differ in several areas
which are important to note:

-301-

SVID As A Basis For CAIS Implementation

• PCTE supports a concept of schemas,
subschemas, and the notion of working
schemas. These can be used to restrict
the logical view of objects and to control
relationship and attribute mapping to
objects. Nodes, classes of relationships,
and attributes are typed. PCTE does not,
however, perform any process to object
type checking during execution (there is
debate as to the implementability of pro
cess to object type checking in real
time).

• PCTE supports transparently distributed
processing on multiple (heterogeneous)
workstations and processors sharing a
Local Area Network.

• PCTE provides binary code compatibility
with UNIX System V.2 tools; programs
which are only obtainable in binary exe
cutable forms (and cannot be recompiled
or relinked) will operate properly.

• PCTE provides a windowing user inter
face.

• PCTE provides a SVID-like discretionary
security system, which is different from
the model in CAIS.

• PCTE has no software provisions for
mandatory security. The certification of
the SCOMP system provides some hope
that a "hardware hack" could be used to
implement mandatory security for a
PCTE implementation. It is also possible
to use the view restrictions afforded by
the Schema capabilities to implement
some security functionality.

In general the primitives in PCTE can be
mapped to the primitives in CAIS and vicc
versa. Mappings from CAIS to PCTE are
nearly complete, though CAIS lacks some of
the functionality provided in PCTE. It is
interesting to note, however, that the differ
ences between Ada and SVID style impact
the apparent granularity of primitive opera
tions. For example, let us compare opening
a node handle in the two systems:

The CAIS call to open a node handle speci
fies a time limit, either a character path
name or a base node and relationship from
that base node, and an intent specification.
These are one transaction to an Ada program
(though they may represent any number of
low-level operations in an implementation).

The PCTE equivalent requires several kernel
and user library-routine operations: allocat
ing a current object (e.g., the node handle),
performing an alarm(time limit), a function,
chrefobj(), to make the current object
equivalent to the path to the node, and a pos
sible lock() operation. These separate
operations might be necessary at the "C"
interface level if the "C II user wished to per
form the same operations as the CAIS Ada
user.

Another visible difference between CAIS
and PCTE is in the handling of errors. With
CAIS, the Ada style of exception raising is
used, while with PCTE, the SVID style of
error returns is used. Generally most imple
mentors of Ada compilers map the error
returns of SVID implementations into excep
tion returns anyway, so this is more a differ
ence of language usage style than an impor
tant one. There are a few ambiguities of
error return to exception mappings, but
these are minor.

Process control primitives differ. For exam
ple:

In CAIS a single function call is used to
spawn a process.
With PCTE, the equivalent functionality
would require a start() (of the process), a
possible startact() (transaction locking primi
tive), a crobj() to create the node model
object representation for the process node, a
number of setattr() calls to set the attributes
up for the process, and a possible lock() call.
Of course, it is quite likely that a specific
CAIS implementation would break a process
spawning function call down to a number of
subfunctions anywaYi however, the user sees
a higher level of abstraction of function call.
(There is debate as to the value of abstrac
tion granularity in this regard.)

7. Conclusion

This brief report discusses why we have
CAIS, how CAIS might be and has been
implemented, and how CAIS is very close to
the SVID extensions now being implemented.
The author strongly recommends SVID as a
means of implementing CAIS.

An Overview of the Ada [1] Shell

Lisa M. Campbell, Mark D. Campbell
Advanced Systems Development, NCR Corporation

Engineering and Manufacturin9 - Columbia
West Columbia, South Caro11na 29169

Abstract

In this paper we present ash, a command language inter
preter presently being ~rototyped for the Unix [2]
operating system. Ash 1ncorporates many of the
features of existing shells while exploring new para
digms made possible through a mapping of the Ada
language onto a shell. The most prominent feature of
ash is the use of Ada-like control structures, much
like the use of C-like control structures in the C
shell. Because the Ada lan9uage definition includes
the concepts associated w1th mUlti-tasking, however,
the mapping of Ada control structures is more complete
in ash. In addition to its command language, ash is
designed to facilitate productivity by providing a very
flexible interface to the system which is to a large
degree user-definable.

Rather than present an overview of ash which would
entail a rehash of many of the features of existing
shells, we limit our discussion to those features which
represent concepts associated most closely with ash.
Many of these concepts are existing facilities that
have been modified to more closely reflect the Ada phi
losophy; however, there are several concepts that
reflect the influence of Ada on the Unix environment.

1. Introduction

Traditionally the command language of a particular operating
system consists of a haphazard collection of features that
reflects various aspects of that operating system. Examples
of this are Digital's DCL for their VAX/VMS operating system
and early versions of the Unix Bourne shell. with the
advent of the C shell, the notion of a command interpreter

1. Ada is a trademark of the Department of Defense.
2. Vnix is a trademark of AT&T.

-303-

changed somewhat from an operating system-based concept to a
language-based concept. Constructs like the "shell func
tion" of the current Bourne shell and the control structures
of the C shell are easily mapped onto the corresponding C
function assertion and control structures.

The delineation between an operating system-based and
language-based command interpreter is blurred in unix
because of the strong coupling between Unix and C. The C
language is seldom thought of by users as the language as
defined by Kernighan and Ritchie but rather as that language
with the system and library calls provided in unix. ThlS
coupling increases the ease in which Unix is conceptualized.
This is best illustrated by the remark "If you know C [Unix]
then you know more about Unix [C] than you realize." often
made to users with experience in one but not the other.
What we found really striking was the ease with which C
users could grasp the fundamental concepts of the Unix
shells such that they could begin coding moderately complex
shell scripts after only a few hours of study.

While the strong coupling of Unix and C aids users' concep
tualization of both, it does not aid those users who have
experience in other languages but not C. These users often
wish to program only at the application level in a language
other than C, but must learn a great deal concerning C ln
order to effectively use the Unix tools. For this reason we
be9an the design of a language-based command interpreter for
UnlX that was based on a language other than C. The
language upon which we chose to base this command inter
preter was Ada because of its scope and its expected range
of use. In the tradition of the C shell (csh) and the Korn
shell (ksh) , we termed this command interpreter the Ada
shell (ash).

Ash is designed to offer a cohesive Ada-based Unix shell
which will aid Ada programmers and non-Ada programmers
alike. Ada-like control structures are provided to facili
tate the use of of the shell. Command line editing is sup
ported to minimize the number of wasted keystrokes. A fast,
minimal help system is also supported. Good facilities from
other Unix and non-Unix command interpreters have been
incorporated into ash.

2. The Ada Command Language

ACL (Ada Command Language) consists of a collection of con
trol structures and statements that may be used both batched
and interactively. similarly to the way in which the C
shell supports a C lan9uage syntax, ash features an Ada-like
command syntax. Builtln Ada constructs include:

-304-

:= (assignment)
if <condition> then ... end if
case <variable> is when end case
loop ..• exit <condition> end loop
for <variable> in <first .. last> loop
while <condition> loop ... end loop

end loop

2.1. Assignment

Environment variables may be set using the assignment opera
tor, much like the "=" operator of the Bourne Shell. For
example, to assign a value to the variable TERM, and the
terminal is a vt100, the following ash statement would be
necessary:

TERM := vt100

To check a variable's value, it may be echoed by prefacing
the variable with a dollar sign and using the "put" command:

put $TERM

2.2. The "if" Control structure

The format of ash's "if" control structure is as follows:

if <condition> then
<command 1>
<command 2>

end if

If the condition is true then "<command 1>" and "<command
2>" (and others if they exist) are executed. An "else"
clause may be included to execute other commands if the
"<condition>" is not true.

2.3. The "case" Control Structure

The "case" control structure provides for selective control
similar to the "case" statement of the Bourne shell. The
ash "case" control structure is given below, along with the
Bourne shell "case" statement, to allow their structures to
be compared:

-305-

case <variable> is case <variable> in

when <value 1> => <command 1> <value 1» <command 1>
<command 2> <command 2>... .., ,

when <value 2> => <command 3> <value 2» <command 3>... , ,
end case esac

Ada Shell "case" Bourne Shell "case"
control structure control structure

Each value in the "when" part is compared to the value of
<variable>, and if they match, then the commands after the
"=>" are executed. Variables may be numerical, strings, or
regular expressions. If a variable's value matches none of
the "when" parts, then no commands are executed except those
which follow an optional "when others" clause.

2.4. The "loop" Control structure

The simple "loop" control structure is unconditional, allow
ing command repetition with an "exit" command for termina
tion. The "exit" command may specify a condition for exit
and may refer to a loop by its labelled name, which may fol
low the word "loop". The format of the "loop" control
structure and an example follow.

loop <loop_name>

exit <loop name>
end loop -

loop
test prog > file
i :=-'cat file'
exit if $i = 2

end loop

2.5. The "for" Control structure

The "for" control structure is another ~ype of iteration
structure, used for performing a serles of commands a
predetermined number of times. The "<first .. last>" sequence
may be a range of numbers, a range of filenames in the
current directory (lexicographically ordered), or all
filenames in the current directory:

for <variable> in <first .. last> loop

end loop

To find the pattern "inode" within all C source files in the
current directory, the "for" control structure might be used
as follows:

-306-

for i in a.c .. x.c loop
put The filename is $i
grep inode $i

end loop

2.6. The "while" Control structure

The "while" control structure is similar to the "loop" con
trol structure except that the condition is checked at the
beginning of the loop. Its format and an example follow:

while <condition> loop

end loop

2.7. The Ash Rendezvous

while i /= 2 loop
test prog > file
i :=-'cat file'

end loop

In Ada, intertask synchronization is achieved by "rendez
vous" between a task asserting an "entry" statement and a
task asserting an "accept" statement. Whichever task issues
one of these statements first is queued until the other task
issues the corresponding statement. At this point the body
of the "accept" is executed while the task that issues the
"entry" is queued. After the body of the "accept" has been
executed, execution of both tasks resume again in parallel.
The queueing may be altered by the "select" and "terminate"
statements, which allow conditional and timed "entry" calls.
Intertask communication is achieved through the use of
parameters in conjunction with these statements.

The "accept", "entry", "select", and "terminate" statements
are also used for intertask synchronization and communica
tion in ash (note: pipes are also used, in the same format
as in the Bourne and C shells.). Their functions are almost
identical to those of the correspondin9 Ada statements. The
closest analogy to these statements 1n present Unix shells
are signals and signal handlers. Note that unlike signals,
ash allows the queueing of an "entry" statement.

In Ada, an interrupt is defined as a low-level "entry" which
may be handled by an "accept". Likewise, in ash a signal
may be caught by an "accept". Because of the nature of Unix
signals, it is assumed that all signals act as conditional
"entry" calls. This means that the signal is not queued as
an "entry" but must have an "accept" queued for it.

2.8. Other Constructs

There are many other builtin commands which are a part of
ash, including:

> abort <process>
> low
> delay <time>

-307-

> terminate
> submit <command>
> prompt

The "abort" command results in the termination of a Unix
process. A process may abort any task it has ~ermission to
terminate, including itself. The "abort" facl.lity is an
instantiation of the "entry" command that sends "SIGKILL"
(9) to the specified process. The "terminate" command logs
the user off the system, while the "submit" command enables
the <command> given as its argument to continue execution
should the user "terminate". The "delay" command is similar
to the C shell "wait" command, in which the user ma¥' specify
a specific time for a process to suspend executl.on. The
"prompt" command is used to define the user's prompt. Using
the assignment command, the user may record the event number
and the date in the prompt. The sequence

prompt := "Ada Shell<\!>[\?]"

will yield the prompt

Ada Shell<3>[Fri Dec 6 20:52:26]

where the event number is within angle brackets and the date
is within square brackets. The date will be updated each
time a carriage return is received.

As has been outlined in the preceding paragraphs, ash embo
dies much of the control structure used in the Ada language.
Although different from both the Bourne and C shells,
differences in basic structure have been kept to a minimum.
Ada's rich, explicit syntax allows for a more complete map
ping of the language's constructs to ash control structures.

3. Command Line Editing

3.1. Visual Editing Features

Though the standard command shells are powerful, typing
errors, even at the beginning of a line, are most easily
altered by erasing all chracters back to the erroneous one.
For example, in the command

cpoi -iBcv < /dev/rtp,

in which the "oi" of "cpio" should be "io", or

cpio -iBcv < /dev/rtp,

The user must erase all the way back to "cp", then retype
the remainder of the line. The C shell does provide complex

-308-

command line editing, but it is not highly visual in nature.
On the other hand, ash has features which allow the user to
~erform interactive command line editing, such as position
1ng at the beginning or ending of a command line without
deleting any characters. Capabilities defined are those
which allow the user to go to the beginning or end of a
line; to delete an entire line or from the cursor to the end
of a line; to move forward or backward by character or word
without deletin~ any existing characters; and to move up and
down lines with1n control structures.

3.2. Renaming Commands

The C shell possesses an aliasing mechanism to enable the
user to map commands to personal choices; in effect, an
individual may cultivate his own command set. This is also
particularly useful for persons who use many different
operating systems, who ma¥ wish to map the Unix command
names to a more fami11ar operating system's command name
set. For example, a user most familar with the VAX/VMS
operating system may decide to use the following aliases:

alias
alias
alias

'delete'
'show system'
'directory'

'rm'
IpS -eft
'Is'

Ash uses a similar mechanism, the "renames" command, to
assign command synonyms. The following ash statements
correspond to the C shell aliases:

delete
show system
directory

renames
renames
renames

rm
ps -ef
Is

Also, ash supports shell functions similarly to the System
V.2.2 Bourne Shell, but the syntax is that of Ada.

3.3. History Mechanism

Similar to the C shell, ash uses a history mechanism to
retain a list of a specific number of previous commands and
their corresponding event numbers. The C shell does not
retain a history of control structures, only their first
line. Unlike the C shell, ash's history mechanism is
divided into two parts, the line history (lhistory) and the
command history (chistory). Chistory keeps a list of previ
ous control structures (the entire structure, not just the
first line), while lhistory retains one-line commands. Each
history list defaults to a length of 24, the number of lines
on a standard character terminal, but may be altered using
an assignment command, i.e., "lhistory := 10" or "chistory
:= 10".

-309-

The user may invoke previously-used commands by referring to
them by number; typing 138 will invoke "find. -print I cpio
-oBcv > /dev/rtp" in the following lhistory list:

36 vi test.c
37 cc -c -0 test
38 find • -print cpio -oBcv > /dev/rtp
39 df -t
40 ld -n test.o -0 test -lId

Also, commands may be recalled by typing the unique portion
of command line, such that 11 (or lId, or lId -n, etc.) will
invoke command event 40,

ld -n test.o -0 test -lId.

As with the C shell, the immediately previous command is
invoked with a double exclamation (11). Ash simplifies the
mechanism which modifies other previous command lines. For
example, if event 38 is to be altered so that the cpio -c
option is removed, then the user may enter 138:. The colon
indicates that the command is to be brought back to the com
mand line but not invoked. Once the command is again on the
command line, it may be easily edited using the command line
editing features discussed previously.

4. The Ash Help Facility

The standard help facility of the Unix system is the "man"
command, which displays the manual pages for the utility.in
question. For example, to receive information concernlng
the "dd" command, the user must either find the "dd" entry
in the manual or use the "manit utility. In this example the
user would type "man dd" and wait for the information to be
displayed. Though an interactive display of the manual
pages is extremely useful, drawbacks do exist. Novice Unix
users, especially those that simply wish to use the system
for high-level application development, usually find the
manual pages both terse and difficult. In addition, on many
microprocessor-based systems the interval between the time
that the "man" utility is invoked and the information is
displayed is quite long.

Although the "man" utility is extremely useful, a simpler
and quicker utility suffices for the many of the common
problems that users experience. This facility is invoked
with by typing "grok". (Note: the obvious name for this
command, "help", is already used.) The ash help facility
acts as a quick reference to help solve many of the less
complex problems a user has with Unix utilities. In cases
in which a problem may not be solved using the help

-310-

facility, the manual pages can still be accessed by using
"man".

Ash's help command differs from the "man" utility in a
number of other important ways. For example, the "man"
utility has one fixed format for its invocation, "man
[options for output] <command name>". Conversely, the ash's
help is hierarchical in nature, somewhat like the current
VMS "HELP" command. If the user types "grok", then he will
be presented with a screen of available topics upon which
help may be received, and the prompt will move to the bottom
of the screen, after the message "Topic?". At this point,
he may type in the name of the topic for which he desires
information. Upon the choice of a topic, information con
cerning that topic is displayed. If that topic in turn has
any SUbtopics for which information may be displayed, the
same selection process is followed. At any time, the user
may either enter "quit" to exit help or "return" to backup
one level in the "grok" help hierarchy (except at the top
level, where quit and return will perform the same func
tion). An exam~le of ash's help mechanism follows, in which
a user desires lnformation concerning the "Is" utility:

Sauron<9>: grok

Available topics for which help may be obtained:

adb
cc
col

dd
df
Is

man
nroff
uname

QUIT
RETURN

Enter command: Is

The Is utility is used to display the files in
the current directory. Options are:

-a -b -c
-n -0 -p

-C -d -f -F -g
-q -r -R -s -t

-i -1
-u -x

-m

QUIT RETURN

Enter option: -1

Displays files in a long format, showing size,
owner, number of links, and time.

If the user types "grok Is", then the screen for "Is"
appears without first showing the top-level of the help
hierarchr. Likewise "grok Is -a" may be trped to receive
informatlon concerning that particular lnstance of the
utility's invocation.

-311-

5. Syntactic and semantic Difficulties of an Ada-Based
Shell ---

Basing a shell upon any non-interpretive language presents
both syntactic and semantic inconsistencies. The broader
the sco~e of the language definition, the more apparent
these ~nconsistencies become. For example, the lack of
tasking support in the C language definition allows that
definition to be specified in either the shell or the
operating system. Conversely, tasking support is defined in
the Ada language definition; thus a conflict arises between
the language definition and the operating system definition
of tasking.

These conflicts are intensified by the terseness of common
Unix shells when compared to the Ada syntax. As an example,
the common Unix shell sequences

Is
exec csh

first causes the "Is" utility to be executed and then causes
the current Unix process to be overlayed with the named
file, then transfers to the entry point of the file image.
The corresponding ash commands take the form of Ada task
specification and is given as

task Is
task csh is

pragma EXEC
end csh

While the experienced Ada programmer new to the Unix
environment would be comfortable with this syntax (after
learning the semantics of the EXEC pragma) that programmer
would probably soon grow tired of this lengthy utility invo
cation. Ash supports both types of invocations. Besides
aiding the programmer during the first part of the learning
curve associated with using any new operating system, the
latter syntax should also be quite appropriate for writing
maintainable shell scripts.

An example of the semantic difficulties associated with an
Ada-based shell is the support of the Ada exception mechan
ism. Initially it would seem as if Unix signals and Ada
exceptions could be mapped one-to-one. Upon closer examina
tion, however, it is obvious that there are crucial differ
ences between the two. In addition, there is the possible
mapping of a signal to a low-level entry call. Ash allows
both; unfortunately, neither conforms to the exact Ada
definition.

-312-

6. Ash status

Ash is still in the prototype stage, with limited in-house
distribution. Acceptance of ash has been ~reatly facili
tated by the command-line editing and novel h1story mechan
isms which are not present in the shells currently in use at
NCR Columbia (the System V.2.2 Bourne shell and the C
shell). The Ada command syntax has proven to be somewhat of
a hinderance in ash usage because of the relative inexperi
ence that exists programming in Ada.

Due to the inavailability of Ada on our target machine, "c"
has been used as our development language. Given the state
of Ada compiler development, we do not foresee changing this
language base for some time. Lex and Yacc are used for
input tokenizing and parsing, respectively. Terminal
independence is attained with Unix "terminfo" and "termcap"
library routines for character input and output.

Code size is not yet a consideration at this stage of
development; currently the total size of text, data, and bss
is approximately 60K on the MC68020-based NCR Tower 32.
Performance is quite good on all of the machines upon which
ash has been tested: from 10MHz MC68010 to 16.7 MHz
MC68020-based machines.

7. Conclusion

Unlike past operating systems, the Unix command interpreter
is an application program and can be interchanged with other
application programs. This is an extremely powerful feature
that has ¥et to be fully exploited. Much like syntax
directed ed1tors and language-sensitive debuggers, the shell
can be constructed to reflect a particular language. This
could later be integrated with other language-specific com
ponents of a system to provide a cohesive and comprehensive
environment. Language-based shell design, while not a pana
cea, is an important step in the direction of language-based
environments on general-purpose operating systems.

In this brief overview of ash, we have hi~hlighted the
impact that the Ada language has on shell des1gn and on the
Unix environment in general. In addition, we have demon
strated several features that, while not specific to Ada,
are still fundamental to the operation of ash. While the
feature content of no system and language can be expected to
map one-to-one, the functionality of Ada maps remarkably
well with the functionality of Unix.

8. References

1. Booch, Gary, Software Engineering with Ada,

-313-

Benjamin/Cummings PUblishing Company, Inc., Menlo Park,
California, 1983.

2. Bourne, S.R., The Unix System, Addison-Wesley Publish
ing Company, London, 1983.

3. Campbell, Mark D., Kira-- An Ada Support Kernel,
Master's Thesis, University -Of South Carolina, May
1984.

4. Joy, william, "An Introduction to the C shell", Com
puter Science Division, Department of Electrical
Engineering and Computer Science, university of Cali
fornia, Berkeley; Berkeley, California, December 21,
1979.

5. Olsen, Eric W., Stephen B. Whitehill, Ada for Program
mers, Reston PUblishing Company, Inc., Reston, Vir
grnIa, 1983.

6. Pyle, I. C., The Ada Programming Language, Prentice
Hall, EnglewoOO-CITrfs, NJ, 1981.

7.

8.

9.

csh, Unix System V manual, AT&T, September 12, 1984.

sh, Unix System V manual, AT&T, September 12, 1984.

Military Standard: Ada Programming Language, American
Nat10naI standardS-- Inst1tute, Inc., ANSI/MIL-STD
1815A-1983, January 22, 1983.

Implementing Curses in Ada~)

Karl A. Nyberg

V d· ™ C .er lX orporatlOn
14130-A Sullyfield Circle

Chantilly, VA 22021

Abstract: Prototype Ada packages and associated programs are described that can be used in the
management of terminal capability databases and in the development of terminal-independent display
software in Ada. These packages and programs are intended to provide the capabilities similar to the
UNIX™ terminfo utilities and curses libraries for the Ada programmer, and are intended to be sufficiently
genera.l as to be easily ported to other operating systems.

1. History

1.1. Termeap

Termcap (terminal capabilities) consists of a database describing the various capabilities of
display terminals and a collection of routines for accessing those capabilities. It was originally
developed at the University of California at Berkeley by Bill Joy while developing the screen editor vi
(1) [Joylj. The display routines were reverse engineered from the pseudo-terminal display features of
the ITS operating system [Joy2]. Those routines particularly directed toward the optimization of cursor
movement were packaged up by Ken Arnold and provided as a separate library, known as curses (3X)
[Arnold], for use in other display oriented applications.

1.2. Terminfo

Like termcap, terminfo (terminal information) consists of both a database describing capabilities
of terminals and a collection of routines for accessing those capabilities. It was developed by Pavel
Curtis at Cornell University based upon termcap, but with additional features used (such as
insert/delete line) [Curtis1], and optimization of execution time provided by compiling the capabili~ies

database. A curses library utilizing the terminfo database and routines was also developed [Curtis2].

2. Ada Implementation

The Ada implementation consists of two parts - a compiler for the capabilities database and a
package for accessing those capabilities from their compiled form. Each of these two parts is described
in the following sections.

2.1. Capability Compilation

The concepts used in the implementation of terminfo were followed in the Ada implementation. A
database is maintained that contains descriptions of terminals in a human-readable format. For each
terminal in use on a particular system, that terminal's description is compiled into a separate file.

Ada is a registered trademark of the U. S. Government (Ada Joint Program Office).

Verdix is a trademark of Verdix Corporation.

UNIX is a trademark of AT&T Information Systems.

• The t.e~minfo/cursesdatabase and routines have been taken over and supported by AT&T [nformat.ion Systems in the la
test release of t.:,:\iIX, Sy:;tem V. The work reporlp.d herein 15 bas~d upon the public domain versIOn.

-315-

2.1.1. Format of the Capabilities Database

The termcap database was Ilsed as the source for terminal descriptions, and the term (5) format of
the compiled term file was used for runtime execution. The reason for using the termcap database was
one of availability. The runtime benefits of having a compiled database for accessing capabilities were
sufficient to decide to compile the database. Since terminfo had a structure for compiled databases, it
was decided to use that format in order to allow compatibility.

2.1.2. Type Capabilities. package caps

The capabilities list from which all software described herein was developed consists of the three
capability types - booleans, integer, and strings. These capabilities are contained in a file (see example
below), which is processed by tools to create the capability compiler and the type definitions for the
capabilities.

... begin bool
autoJefLmargin,
hard_cursor,
... end bool

"bw" "bw"
"chts" "HC"

cub1 wraps from column 0 to last column
Cursor is hard to see.

-.. begin num
columns,
label_width.
-.. end num

"cols"
"'w"

"co"
"Iw"

Number of columns in a line
-# cols in each label

... begin str
back_tab.
seLrighLmargin,
..- end str

"cbt" "bt"
"smgr" "MR"

Back tab
Set soft right margin

Once processed, the capabilities list results in a package consisting of an enumerated type, capabilities,
with subtypes boolean_capabilities, integer _capabilities, and string_capabilities. An example of
part of the resulting package appears as:

PACKAGE caps IS

TYPE capabilities IS (auto_lefLmargin, seLrighLmargin);

SUBTYPE boolean_capabilities IS capabilities RANGE auto_lefLmargin .. hard_cursor;
SUBTYPE integer_capabilities IS capabilities RANGE columns .. label_width;
SUBTYPE string_capabilities IS capabilities RANGE back_tab .. seLrighLmargin;

END caps;

-316-

2.2. Terminal Description Compilation

Once the capabilities list has been compiled, the tools for compiling terminal descriptions are
generated. Data structures for storage and accessing the information with the following types and
variables is used in the compilat.ion of the terminal descriptions:

TYPE arg IS ACCESS STRING:

TYPE boolean_array IS ARRAY (boolean _capabilities) OF BOOLEAN;
TYPE integer_array IS ARRAY (integer _capabilities) OF INTEGER;
TYPE string_array IS ARRAY (string_capabilities) OF arg;

booleans
integers
strings

: boolean_array := (OTHERS =-. FALSE):
: ir"teger_array := (OTHERS = '>' -1);
: string_array := (OTHERS =. NULL):

An Ada package and set of routines developed for accessing terminal capabilities in a manner
similar to that of the C termcap library is used to read in the capabilities, and produce the compiled
terminal description.

2.3. Accessing a Terminal's Capabilities - package terminfo

The Ada package terminfo provides the same interface for the Ada progra mmer as the terminfo
library provides for the C programmer with the following exceptions: setupterm works for only a single
terminal at the moment - the current /dev/tty attached to the process, and tputs does not allow the
definition of a routine to output a single character.

2.3.1. Available Procedures

The procedures available in the current implementation of terminfo are the procedures tread and
tparm. The procedure tread takes as a single argument a string of the name of the terminal to be
used. The environment will be searched for a variable TERMDIR from which to obtain terminal
descriptions, and if not available, the directory lusr/term will be searched. The error NO_ENTRY will
be raised if there is no compiled entry for the terminal string provided. The procedure tparm
instantiates a particular format string and up to five parameters returning the instantiated string. All
terminal capabilities are available through the variables as described above in capabilities compilation.

2.4. Curses Implementation - package curses

The Ada package curses provides essentially the same interface for the Ada programmer as the
curses library provides for the C programmer. Since Ada allows default values for parameters, it was
not possible to use default values for parameters (e.g., what was previously the macro addch (ch) and
the procedure waddch (win, ch) are now the procedure waddch (ch : character; win: window := stdscr))
to reduce the actual number of procedures involved by almost half. In the initial implementation, the
procedures ror getting and putting formatted data from and to the screen (scanw and printw) have
also been left out.

-317-

2.4.1. Data Structures

The major data structure used in the implementation of curses is that of a window. In the Ada
version a window is similar to the C structure described both in Appendix B of [Arnold] and in the
terminfo curses implementation.

TYPE screen_data IS ARRAY (NATURAL RANGE <>, NATURAL RANGE <»
OF CHARACTER;

TYPE firsLlasLrecord IS
RECORD

first, last: INTEGER;
END RECORD;

TYPE firsLlasLdata IS ARRAY (NATURAL RANGE <» OF firstJasLrecord:

TYPE num_changed IS ARRAY (NATURAL RANGE <» OF NATURAL;

TYPE reaLwindow (firstx. firsty, lastx. lasty : NATURAL) IS
RECORD

minx: NATURAL := firstx;
miny : NATURAL := firsty;
maxx : NATURAL := lastx;
maxy : NATURAL := lasty;
curx : NATURAL := firstx;
cury : NATURAL := firsty;
data : screen_data (firstx .. lastx, firsty .. lasty)

:= (OTHERS => (OTHERS => ' '));
fI : firsLlasLdata (firstx .. lastx)

:= (OTHERS => (nochange, nochange));
nc : num_changed (firstx .. lastx)

:= (OTHERS => 0);
clear: BOOLEAN;
leave: BOOLEAN := FALSE;
scroll: BOOLEAN := FALSE;
flags: NATURAL := 0;

END RECORD;

Two major differences between the C implementation and the Ada implementation are evidenced here.
First, the array of characters being used to store the information for the screen is now indexed as with
the row index being the x axis, and the column index being the y axis. Second, the array indides are
now no longer zero based, but based according to the declaration of the minimum and maximum
window sizes. This has the benefit that offsets into the array no longer need be computed with each
reference, but also precludes the ability to move the window to a different set of coordinates.

2.4.2. Available Procedures

There are two types of procedures available to the programmer in curses - those which interface to
the operating system for facilities such as setting the terminal driver characteristics, and those which
deal with the various displays. The procedures for interfacing to the operating system are currently
implemented as calls to corresponding C procedures through the PRAGNLI\. INTERFACE.

By making stdscr the last parameter of a several procedures, the quantity of procedures has been
essentially cut in half. Of the remaining procedures, the only really interesting procedure is the refresh

-318-

procedure. The current refresh procedure is implemented using the basic redisplay algorithm presented
in :Finsethl. As the remaining procedures become developed and debugged, the more advanced
algorithm will be employed.

3. Results

3.1. Applications

The curses package IS In use in three programs at the moment - a Towers of Hanoi example, a
program to display certain mathematical functions, and a reimplementation of a visual text editor.

3.2. Difficulties Encountered

One of the first stumbling blocks encountered was obtaining a suitable database of terminal
capabilities from which to compile. Although it was clear that the terminfo concept of a compiled
database would be preferable, the difficulty of obtaining an up to date version of the terminfo data and
the immediate availability of an acceptable termcap database resulted in the decision to take the
hybrid approach.

Originally it had been hoped to use the capabilities themselves as elements of the enumerated type
in the Ada implementation. However two hurdles presented themselves in this area. First, some of the
capabilities are the same when capitalization is ignored (as it is in Ada), and second, some of the
capability names were themselves already reserved words in Ada (e.g., in and if). Since the capabilities
list comes with a list of programming names (in addition to the terminfo and termcap designated
capabilities), it was possible to use these without any difficulty.

Since Ada is intended to be more independent of the underlying operating system than other
languages, it was also more difficult to access the operating system for the services necessary for setting
the terminal modes. It was possible to write routines in C that performed the necessary actions, which
were called from Ada via the PRAGNlA INTERFACE construct in Ada.

3.3. Applicability of Ada

Although there was increased difficulty in using Ada to interface to the operating system, in other
respects it was as good or better than C in this application. Where C had macros, Ada has default
values for parameters. One particularly bright spot in Ada was memory management. The underlying
details of memory allocation and deallocation were hidden from the programmer and no unnecessary
attention to detail was required, whereas the C implementation required significant attention to the
proper allocation of data space through malloe.

3.4. Future Directions

It has not been possible to develop any metrics for evaluating the relative performance of the Ada
implementation with respect to the C implementation. However, using the profiling options of VADS™,
it has been possible to identify execution bottlenecks in the library, and target their reimplementation
for better performance. The refresh procedure would be an excellent candidate for evaluation of this
form.

VADS is registered trad~mark of Verdix Corporation.

I

-319-

The new curses system is currently undergoing porting to various other systems, both UNIX (Sun,
Sequent, eCI, Apollo) and non-UNIX (V1vlS) in order to localize system dependencies, and to in vestigate
the portability of Ada code. All systems being ported to will still be developed using VADS.

The termcap database allows the specification of delays only at the beginning of a string
capability, while the terminfo database allows delays to be contained anywhere within the capability.
It would be preferable to be ·able to use the terminfo database because of this increased flexibility.

It would be quite interesting, especially on a multiprocessor system, such as the Sequent Balance
8000, to have a version written that uses tasking, and to observe the performance results.

4. Acknowledgements

Appreciation goes to Bill Joy for originating the terminal capabilities database and writing the
original routines for working with the database; to Ken Arnold for packaging up curses as a separate
library for use in other programs, and to Pavel Curtis for the concept of compiling the capabilities
database into the terminfo database and the corresponding version of curses.

6. Rererences

[ArnoldI - Arnold, Kenneth C. R. C., Screen Updat1.'ng and Cursor l~ovement Optimization: A Library
Package, Computer Science Division, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, Berkeley, California, 94720.

[Curtisl]- Curtis, Pavel, The Curses Reference Alanual, unpublished manuscript.

[Curtis2]- Curtis, Pavel, New Features in Curses and Terminfo, unpublished manuscript.

[Finseth] - Finseth, Craig A" Theory and Practice of Text Editors . or - A Cookbook for an Emacs,
Bachelor's Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 02139, May 1980.

[Joy1] - Joy, William, An Introduction to Display Editing with Vi, Computer Science Division,
Department of Electrical Engineering and Computer Science, University of California, Berkeley,
Berkeley, California, 94720, June 4, 1980.

[Joy2] - Joy, \Villiam, Private Communication.

VMS is a trademark of Digital Equipment Corporation.

NOTES

,,
I

'..

:.'.

BIG PAPER ON UNIX

Presented b~ Robert P. Bilyeu
of the MacNeal-Schwendler Corporation
(213):258 - 9111

USNIX conference 17 Januar~ 1986
Denver Colorado

The title of this paper is Big Paper on UNIX. The idea

behind the title is this: if large scale computer s~ste~s

can be refered to as big iron, then a large scale software

packa~e can b~refered to as big paper. When I first heard

of this ses.i~. UNIX on Bis Iron, I thousht that since

HSC/NASTRAN ~. on almost ever~ machine ~hat is refered to

as Bi~ Iron I ~anted to tell about m~ experiences with UNIX

in order to promote an effective compatabilit~ between UNIX,

Big Iron, and large scale engineering application software.

I would like to sive a brief explanation of what HSCI

NASTRAN is. talk about some of the problems we have

encountered as we ported our code to some UNIX s~stems, and

discuss how our product looks to the end user.

I What is MSC/NASTRAN1

NASTRAN was ori~onall~ written in the earl~ 19605 under

NASA fundins. After that project was completed NASTRAN was

released into the public domain. The MacNeal Schwendler

Corporation took a public domain version of NASTRAN, and

enhanced it. We market this improved version as MSC/NASTRAN

and continue to make improvements.

MSC/NASTRAN is a seneral p~rpose structural anal~sis

program. What this means is that if an ensineer can tell

our program what a structure (such as an airplane or a car)

looks like, and what forces it will be subjected to (such as

the vibration due to an enSine or motor) MSC/NASTRAN can

tell the enSineer how the structure will respond to those

forces.

A simple example is shown in the followins three

fi~ures. A pair of SQuare metal tubes are connected b~ an

IH I support. The tubes are ~oins to be twisted, and the

en~ineer wants to know how this structure will respond.

HSC/NASTRAN can predict how the structure will respond, but

it is U~ to the en~ineer to interpret the results. The

first fi~ure shows the tubes and the support as separate

pieces. The second figure shows the Istructure- as it is

before any forces are applied, and the third figure shows

the structur. as it looks after the forces have been apPlied.

(These plot•. were ~enerted usin~ MSC/GRASP, an interactive

pre and Po.tf~p~oee5sor that we «HSC» market.)..

••• READV
ESCAPE

•••CONTROL RETURH£D fRO"
tHE ALTiRHATE FILE.

)

FIGURE - 1 (GRASP DEMONSTRATION~ NORMAL MODES)

I'. f' I / /

"'""" "- , 1I V V

I'- /

'" '"

/ /' / , I'-. ,

V V 1/ \ '-J "J

~SC/GRASP(UA)(25-FEB-83 07130'44

•••READY
ESCAPE

••• CONTROL RETURNED FROn
THE ALTERNATE FILE.

)

FIGURE - 2 (EXPLODED HIDDEN SURFACE U EW)

U_\~L I] rn=o

l'1SC/GRASP(UA)() 2S-FEB-83 07&31147

SOLUTION RESULTS FOR
"00£ •••••••••••••4
EIG£HUALU[••••••• 6.••••8
FR£OUEHCY........ 411."

---~--~~~-~-.~-.--~~~--~.---
ftAX D[FORRATION. -1.17

S~AL£ X.Y.Z... • •••

FIGURE - (MODE ~ - DEFOR"ED STRUCTURE)

•••READV
ISCAPE
••• CONTROL RETURNED flO"

THE ALTERHATE 'ILE.
)

2S-FEB-a] e 135s53

II UNIX related conversion problems.

Before I discuss the various problems that we have
encountered doins ports to UNIX s~stem$' there is an
interestin~ ob••rvation that is worth discussing. UNIX was
ori~onall~ d..i~ned as a tool for doin~ operatin~ s~stem

research, and is desisned around interactive software
written in C. HSC/NASTRAN is: an application proSram, not a
part of an operatins sYste~; a batch pro~ra~, not
interactive (matrix al~ebra does not lend itself to
interactive processing!); a FORTRAN pro~ram, not a C pro~ram.

With all of these differences it would seem that UNIX
and MSC/NASTRAN are not a sood match, but user pressure for
a 'standard' operating sYstem and application softwdre
available on the machine of their choice see~s to have made
MSC/NASTRAN and UNIX partners.

It is an easy out for me to blame UNIX for the problems
I have encountered durinS our ports, it is also easy to
interpret my comments about UNIX as attacks on UNIX. I do
not intend this to be the case. I am very excited about the
idea of a standard operatins sYstem, my comments about UNIX
are intended to point out the rou~h spots between UNIX and
ensineerins software. It is my hope that, as more products
port to UNIX based s~stems, we Cdn learn from these
experiences, and that both UNIX and en~ineerinS software will
evolve into forms that are better for the end user.

There are many ways to orsanize the porting problems we
have encountered. I will present the problems in
chronolosical order.

1. Size. HSC/NASTRAN is written in fortran, and consists
of about 2500 subroutines and contains a total of about 500,000
source lines. We like to be able to or~anize our source
code so that each subroutine is a separate file, arid all the
files are located in the same directory. Some UNIX sYstems
can not handle this man~ files in a sin~le director~. This
makes our maintenance more co~plex.

We have been able to avoid this problem by splittin~

our source into 26 subdirectories, based on the first letter
of the file nae., but this is not a ~erY desirable solution.
I would lik~~G see UNIX raise the limit to a much lar~er

nUlDber...:
", 1ftt:~.~

2. Fortran. The size and a~e of our code (some routines
were first written twent~ years a~o) causes problems with
EVERY fortran compiler we have ever used (even IBM's H
extended enhanced compiler!). (We are the pathalosical
worst case ~our teachers warned YOU about!) Many of the
compiler related problems we have encountered are self
inflicted wounds, but there are some common problea,s we have
encountered with UNIX fortran compilers:

a. Most non-UNIX fortran compilers produce listinss
and sive cross references for variables and
subroutine calls. This does not appear to be a
st~ndard feature in UNIX. The ar~ument that
su~wa listins can be Senerated b~ separat~

pro•••• is not valid for us: listinss are a ~ood

plac. to look for compiler errors <~ou have to
read between the lines, but it is doable), a
separate prosra~ takes this capabilit~ awa~ from
me.

b. The prefered lansuase in most UNIX s~stems seems
to be C. If UNIX is ever soins to be a Sood
environment for ensineerins software, we need
a robust fortran compiler.

3. Object code. We use object libraries to help manase our
code. It is difficult to maintain our object code as ·.0·
files, due in part to the restrictions on the number of
files in a sinsle subdirectory, (It is also not very user
friendl~ to have to explicitl~ list all files needed to bind
our code.) ·Ar- has been sugSested as an object librarian,
but it is simpl~ not sood enough. It is more concerned with
rememberinS file na~es, where as an object librarian should
be more concerned with entrY points. If two subroutines
with different associated file names have the same entr~

point, UNIX will not catch this; at bind time it is
unpredictable which entr~ point·will become part of the
executable. Object librarians should be desiSned to work
efficiently with the binder, I would like to see UNIX come
with a true object librarian,

4, Performance. The performance of the fortran compilers,
the object librarian (ie ar), and the binders on UNIX
sYstems tend to be much slower than their counter parts on
non-UNIX s~stems. (The measure of slowness takes into
account the manufactures claim of relative performance. For
example if a UNIX machine is claimed to be four times as
fast as machine V. odds are that their compiler, object
librarian. and binder will aetuall~ run slower than the

. ·correspondin~ products on maehine v.)

5. SYste. calls. An important part of our portin~ process
involves the use of -low level s~ste~ calls·, There are two
main probl••• that we have encountered interf~cin~ with the
operatind ~~•••

a.· w. ~ref.r to be able to call operatin~ s~stem

entrY points directly fro~ fortran. Most UNIX
s~stem5 reQuire us to use a C routine to make
these calls. The solution to this is to have our
fortran code call a C routine that in turn calls
the operatin~ s~stem. Normall~ this ·bounce call·
is ok, but there are times when this adversel~

effects performance. I would like to be able to
call the operatin~ s~stem directl~ from fortran.

b. For a varietw of reasons, mostl~ performanc~

related, we like to manase our I/O at d fairl~ low
level. We like to specif~ the buffer location,
thefl1le name and a file position; we then want
th. Q••ratin~ s~ste~ to do the I/O directl~

betw.en-that specified buffer and the indicated
fil./file location. Our code is able to locat~

the buffer on what ever bit, b~te, word, or paSe
boundr~ is reaured; the code is also able to use
a transfer size that is ri~ht for the I/O device
bein~ used. Our experience has been that we can
not do I/O at this level (there is usually a
s~ste~ buffer that the data must so throu~h on its
wa~ between disk and memor~), and that there is,
sometimes. a buffer pool that is used. MSC/
NASTRAN is set UP to do I/O at a low level, and
an~ atte.pts to restrict our access to this t~pe

of I/O, even if the restrictions are -for our own
sood l , will have a ne~ative impact on the
performance of our product. I would like to see
UNIX Sive us access to this low level 110, and I
would also like to be able to have more control
over an~ buffer pool. (If we work to~eather the
end performance of HSC/NASTRAN will reall~ use the
maximum potential of the hardware.)

6. Debu~. The last major phase of a conversion project is
the debu~ or Gualit~ Assurance c~cle. Due to the nature of
our code, the approach that works out best for us is to run
a lot of problems throu~h our code in a batch environment
and check the results. If a run crashes we do not want to
re-run it interactivly Just to see where it died, we want to
be able to ~enerate a trace back at the point of the error
(ie a divide b~ zero or a SQuare root of a nseative number),
trap the error, print our own Imini dumpl and exit
sracefull~ (ie clean UP our open files). Some of these runs
take hours to run, and use so much file space that it is not
practical to rur. them durin~ the da~. It is ver'::l importan.t
to us to be able to set trace backs in a batch run, and I

. would like to see UNIX make this a standard capabilit~.

Another capabilit~ we need is an interactive swmbolic
debus~er. The features that the UNIX debu~ser has are
sufficient,.howaver the debu~~er tends to bo~ down with a
pro~ra. th~"Z. af HSC/NASTRAN. A debusser that can reall~
handle a 1a.... code "akes the conversion ~o mlJch f aste r.

III What does MSC/NASTRAN look like to the end user?

MSC/NASTRAN is a batch pro~ram. and in a multiple user
environment. baeksround is not the same thin~ as batch. To
trul~ ~et efficient resource usase b~ MSC/NASTRAN, there
must be a li.i~ to the number af MSC/NASTRAN runs that ar~

active at an~ one time. the priorities mu~t be manased. and
each run ~u5t not be allowed to use the entire machine.
Batch Queues are the best wa~ to ~et the most throushput out
of a maehine that has MSC/NASTRAN as a sisnificant
percenta~e of its load. I stronsl~ sussest that UNIX have a
batch Queue incorporated into it.

MSC/NASTRAN uses a lot of files: UP to 16 data base
files, UP to 5 user defined alternate output files, UP to 3
primary input files, and 2 printed output files. UNIX has
the feature of bein~ able to pipe line files. blJt standard
UNIX only can handle one input and one output file. This
leaves 24 files that must be re-directed some other wa~. It
would be very nice if UNIX were to expand the pipe line,
capability in some way. to allow for more than Just one
input and output file. Our solution works, but it is not a
simple one for the end user to So into and modify if he or
she needs to chanse it.

HSC/NASTRAN does a lot of 1/0. A file transfer size
that is efficient for interactive work is usual1~ much too
small for MSC/NASTRAN. An unfortunate desi~n in UNIX is
that the file transfer size seems·to be a sYstem parameter,
and once set is the same for all ,files. This is a serious
blunder in UNIX, and if performance is at all important therl
different files should be able to have different file
transfer sizes. Failure to do this will ~ive end users
reasons to reject UNIX on perfor~ance reasons, and purchase
sYstems that have better performance.

IV Conclusions.

I am really looking forward to workins with UNIX
sYstems for a long time to come. There are some difficult
areas relative to running MSC/NASTRAN on a UNIX based s~stem

but these proble.s are not unreso1vable. Cooperation
between ap~lic.tiQn pro~rammers and the people who set the
UNIX st.and••~ .. i 11 resul t in final prodlJcts that reall~
solve the n.... of t.he end users. That is our primary soal:
my primary ~.acfuc:t. is software for structlJrdl arla1Ysis,
MSC/NASTRAN is ey current product; user friendl~ portable
operatin~ s~stems is your primar~ produce, UNIX is your
current product. As the needs of the end user change, so
will the form of our current products; failure to change as
our end users needs change will force us out of the market,
and I want to staY in the market for a lon~ time!

(

CONVEX Enhancements
to 4.2 BSD UNIX

Robert B. J(olstad, Ph.D. Thomas L. Watson
CONVEX Computer Corporation

701 Plano Road
Richardson, TX 75081

214-952-0351

ABSTRACT

The CONVEX 0-1, the world's first affordable supercomputer, uses 4.2 13SD UNIX as its
primary operating system. CONVEX's customers demanded performance and functional
ity enhancements to bring the operating system software's functionality to the same level
as that of other supercomputer manufacturers.

This paper details some of the enhancements supported by the CONVEX 0-1. Most of
these enhancements are for performance or slight functionality improvements that affect
portability only somewhat. They include: large real and virtual memory, hardware sup
port for referenced bits, certain "real-time" extensions, shared and locked memory,
increased I/O bandwidth and extended features, more thorough accounting and system
management utilities, tools for testing and distributing software, advanced language pro
cessors, and advanced development tools for those processors.

I

Introduction

CONVEX's original implementation
thrust for 4.2 13SD was that of compatibility.
Programs which ran on 4.2 13SD VAX. UNIX (and
~hich did not depend on hardware quirks) were
to run unchanged on the CONVEX UNIX system.
The developers achieved this goal about the time
the CONVEX 0-1 was announced as the "world's
first affordable supercomputer."

Customers of supercomputer vendors
have demands and expectations for operating sys
tems which differ from users of minicomputers.
CONVEX found that I/O performance and vir
tual memory performance were issues dear to the
heart of supercomputer buyers. In order to
attract even more buyers, CONVEX UNIX now
contains a number of performance improvements
(mostly for I/O and virtual memory) and a lim
ited set of functional additions - implemented in
a way which encourages compatibility.

The sections below outline the additions
and changes to CONVEX UNIX. These changes
usually came about due to larger physical and
logical memory, higher scalar speed, and most of
all: higher expectations of a computing engine.

Virtual Memory

The CONVEX 0-1 solves large
mathematical problems that lend themselves to
vectorization. The primary applications of a C-l
require very large address spaces - often using
dozens of megabytes of physical memory and
more than a hundred megabytes of virtual
memory. The 0-1 hardware architectural
improvements provide a more hospitable environ
ment for 4.2 13SD UNIX than the VAX 780, par
ticularly for very large processes:

• 4 G13 virtual address space (2 013 System, 2
GB User)

• Up to 128 MB of real memory
• 4 K13 page size
• Hardware referenced bits
• Non-contiguous 2-level page tables

Increased Page Size

The larger (4 K13) page size of the 0-1
demands less overhead in page fault processing
and fewer page faults per process, at the possible
expense of more wasted memory and disk
bandwidth. The "clustering" of 4.2 13SD UNIX
treats multiple virtual pages in the address space

as a single page, in order to gain the advantages
above; the 0-1 's larger page size makes clustering
unnecessary. A side effect of the page size choice
is that one cannot create a file system on the 0-1
with a block size smaller than 4K.

Hardware Referenced Bits

The 0-1 hardware provides hardware
referenced and modified bits for each physical
memory page. Associating these bits with physi
cal pages instead of page table entries allows a
cleaner implementation of shared memory (see
below.) The 0-1 avoids the VAX 780 simulated
reference bits and only "steals" pages that have
not been been referenced recently. The page
reclaim algorithms remain unchanged.

CONVEX Page Tables

The CONVEX 0-1 architecture supports
hierarchical' 'page tables. Eight segments
comprise' the virtual address space. Segment
descriptor registers point to eight first level page
tables, one for each segment. Each first level
page table 'has' 256 'entries that may point to a
level twO page table. Level two page tables each
have 1024 entries each that point to a 4096 byte
page.

On the C-l, the system occupies the
lower half of the virtual address space (OxO
through Ox7FFFFFFF). Under UNIX, all
processes share the same level one page tables for
these lower four segments. Each process is allo
cated fout level one' page tables for the higher

,four segments. The system allocates all four con
'tiguously (since all' four fit in page), although it
need not do so. It allocates level two page tables
from any available free memory page. This
scheme eliminates page table expansion swaps
which were costly in terms of disk bandwidth and
inconvenient when a process was to be locked in
memory.

A surprlsmg number of C programs
erroneously depend on the fact that the address
zero (a NULL pointer) is in user space on a VAX.
In the 0-1, reference to address zero generates a
bus error, since location zero is part of the system
space. CONVEX followed in other
manufacturer's footsteps eliminating each of
these dependencies.

, The 0-1 's vector context includes 8 vec
tor registers - over 8192 bytes or information.
Saving this context on each process switch can be
very time-consuming. 0-1 UNIX exploits the

"vector valid bit" which reflects whether the
current process is the one that "owns" the vector
registers. All vector operations cause a' trap if
executed when the vector valid bit is off. The
operating system then performs the context
switch and resumes execution. When only a
small number of people use the vector registers
concurrently, this scheme provides a real savings
of CPU time.

Even with all these changes and enhance
ments, CONVEX 4.2 BSD UNIX remains highly
compatible with Berkeley VAX 4.2 BSD UNIX.

Real Time Extensions

Users of real-time proceSsing want deter
ministic response to processing requests. Ways of
supporting this desire include:

• Enhancing process prioritization
• Locking programs and data into memory
• True preemptive scheduling with low latency

CONVEX UNIX provides' support for the
first two scllemes above. Traditionalimplemen
tations of UNIX do .not lend themselves to low
latency pre-emptive scheduling since a context
switch cannot occur while the kernel is servicing
a system call.

New Priority Scheme

CONVEX's priority scheme is a'superset
of the schelIle of normal 4.2 BSD. Besides 'the
normal priority values that ranged 'from -20 to
+20, there are additional priorities whic,h, extend
the range to -64 to +64. These new priorities
have special mappings which support both fixed
and "variable" priorities.

Traditional UNIX priorities change as 'a
process uses or relinquishes CPU and I/O
resources. Processes which are "cpu hogs" find
their priority dropping in favor of interactive
processes.

The new scheme extends the normal
range of priorities to -32 to +32 - theSe priorities
operate just as before. The other new priorities
(-64 to -33 and 33 to 64) have special meanings,
though. These priorities map onto the extremi
ties of the smaller range. The best extended
priority (-64) is not 32 better than the best nor
mal priority (-32). The priorities from -33 tQ -64
are fixed: they do not change with CPU and; I/O
demands. Fixed priority -33, though, corresponds
to variable priority -16 or so. Likewise, fixed

priority 33 corresponds to variable priority 16 or
so. Some high priority jobs with variable prior
ity can have higher priority than some fixed
priority jobs (got that?). Some high priority jobs
with fixed priority always have a higher priority
than jobs with variable priority. The scheme
reflects similarly to the other end of the priority
scale.

These' new priorities allow programmers
to specify whether their processes should compete
with normal time-sharing or not.

Memory Locking

Real time users do not wish to wait until
their programs or data are paged (or swapped)
into .memory. CONVEX UNIX provides both
pre-paging and locking to mitigate this problem.

Two new "magic numbers" direct exec to
load a program and its initialized data immedi
ately; one of them also inhibits both the page
daemon and the swapper from action against the
particular process's pages. .

Shared Memory Extensions

Sophisticated third party packages (e.g.,
d~tabases) require shared memory to support
tightly coupled cooperating processes. CONVEX
shared memory provides a large number (e.g., 32)
of memory regions located between the data and
stack segments. These regions can be shared
among a set of cooperating processes. The shared
memory usually contains data but in this imple
mentation can also include shared executable
code.

The file system provides the name space
for shared memory (the inode pointer uniquely
determines the name space in implementation).
Three mapping domains (file, swap, and charac
ter special device) support different kinds of
mapped memory.

\Vhen sharing in the file domain, the con
tents of the mapped file (or a subsegment thereof)
appear in each process's virtual address space.
Changes (writes) to the space appear in the file
automatically. References to locations beyond
the length of the file may optionally extend the
file. Normal read/write operations can not
proceed concurrently with shared operations on
that file. The kernel swaps and pages the shared
memory directly to the mapped file as system
demands require.

When sharing in the "swap" domain,
there is no permanent final output file; pages are
zero-filled-on-demand and sent to the swap area
for paging or swapping.

The "character special device" domain
currently supports devices that can share memory
directly with a user program (Le., provide PTE's
which multiply map physical memory). The
/dev/mem and /dev/kmem devices map segments
of physical/kernel memory into user space using
the dormant d_mmap driver entry point in the
cdevsw table. Future devices could support bit
mapped graphics by sharing the map directly
with user programs.

Input/Output

The Convex Architecture uses tightly
coupled intelligent I/O processors to perform
I/O. These processors are connected through
caches to the C-l central memory system.

Currently there are two types of I/O pro
cessors. One supports dual Multibuses for con
necting standard Multibus cards that interface
variety of devices such as disk, tape, and termi
nal I/O. The other I/O processor type i.s
intended as a high speed (> 40 MB/s) interface
to specialized interfaces, such as devices for real
time acquisition or very high speed disks.

The I/O processors run a real time execu
tive that responds to interrupts from either the
C-l CPU or device controllers. The I/O proces
sor can command device controllers to send DMA
data directly into 0-1 central memory (through a
cache). The C-l CPU uses a message based pro
tocol to pass requests to an I/O processor, which
processes the request and sends a message back to
the CPU that wakes up any processes w'aiting for
completion.

This architecture removes some of the
load of I/O processing from the 0-1 CPU, at a
slight increase in access time to a device (each
request to a device passes through both the CPU
and the I/O processor).

I/O Bandwidth Improvements

Supercomputing applications need I/O
rates of many megabytes per second - the vector
unit is capable computing dot products at dozens
of megabytes per second rate when running at
full speed. Even the improved 4.2 BSD file sys
tem was not capable of I/O rates much above 0.3
MB/sec.

CONVEX Unix supports file systems
with block sizes as large as 64 Kbytes, thus
allowing larger contiguous disk transfers (almost
three tracks on an Eagle). Fragment sizes may
still range from 1/8 to 1/1 of the block siz~; this
wastes some disk space but provides higher disk
bandwidth.

Disk Striping

CONVEX UNIX can map several block
devices into a single logical device. This allows a
filesystem to be split over an arbitrary number of
partitions, with files interleaved across different
physical devices. The system manager can
change the mapping while the system is up (pro..
vided the corresponding file systems are· not
mounted). The new system achieves bandwidths
approaching 4.0 MB/sec with four striped disks
and a 64K byte bsize, for example.

Since the stripe device is a logical one
which interfaces to any other block device, CON
VEX conducted the experiment 'of mapping two
tape drives into a single logical tape drive (with
twice the bandwidth). In this scheme, sequential
records are alternately written to two physical
tapes. No use has been found for this high speed
application, unfortunately.

The system dynamically adjusts the
amount of filesystem read-ahead based on the
potential bandwidth of the file system (as deter
mined by the request size and the number of
disks "striped" together.) For the highest
bandwidth file systems up to twelve 64K byte
buffers may be requested in anticipation of future
user I/O calls. The C-l has a very large buffer
cache - typically at least ten percent of the physi
cal memory or 12M bytes for the largest
configuration (experimental systems have even
bigger buffers).

The vector unit copies data at 20 MB/sec
between kernel and user space. It also clears
pages at a rate of 40 MB/sec for newly allocated
disk blocks and zero..fill pages.

Functional Enhancements

CONVEX UNIX supports asynchronous
I/O through daemon processes which perform the
I/O on behalf of the user process. The daemon
and user processes share address space while the
I/O is being performed but can be scheduled
independently. User processes can then continue
while I/O is in progress. The implementation of
shared memory has largely obviated the need for

asynchronous I/O, as a set of cooperating user
processes can easily perform asynchronous I/O.

The new block tape device driver allows
varying physical record sizes, while retaining the
desirable qualities of read ahead, write behind,
and random read access. The physical record size
of a tape is determined automatically for reads
when the first record is read.

System Management Enhancements

CONVEX customers include service
bureaus that run large number-crunching jobs for
which they bill their users. CONVEX customers
are also accustomed to having the kinds of sys
tem management software they have used in the
past on bigger mainframes. This section details
some of the enhancements to the CONVEX UNIX
system.

Accounting

Some CONVEX jobs run for hundreds of
hours and consume vast amounts of memory.
The fields in /usr/include/sys/acct.h are too
small to support the accuracy necessary to bill
for CPU and kilo..core seconds. Worse, the
"accounting group id" is not particularly practi
cal for some of our customers that have many
programmers who each must bill to hundreds of
accounts.

CONVEX UNIX now contains an addi
tional "activity id" field in the proc structure.
This field complements the "group id" field to
form a complete billing account. The "group id"
field retains all its old meanings. New system
calls allow the superuser to change a process's
"group id" and "activity id" fields (which means
"group id" and the group id list move to the
proc structure). A setuid program known as bill
verifies a user's access to an account and changes
his shell process's accounting fields accordingly.
This scheme has the additional features that the
/etc/group permissions file remains relatively
small and that users billing to one account do not
accidentally access another account's files.

A modified version of sa coupled with
several scripts enable the reporting of cpu time,
real time, connect time, lines printed, magnetic
tape mounts, disk usage, and other less interest
ing statistics. Customer programs read the out
puts of the new utilities and then do the actual
billing. The scripts report their results to files,
mailboxes, notesfiles, and line printers. The disk
accounting scripts even send polite letters to users

.. .

who are over quota asking them to please remove
files or get bigger quotas.

System Management

A new program known as "syspic" con
tains all the windows from "pic" programs (like
vmpic) posted on the network as well as windows
which display buffered I/O rates, teletype I/O
rates, network data, disk I/O rates, lOP status,
and tape I/O rates - a total of 30 windows.
Other system management tools include scripts
which regularly produce: daily load average
charts, monthly UUCP traffic, daily bounced mail
reports, system availability plots, disk layout
maps, and a weekly list of modem users. The
ensemble of all these tools enables system
managers to watch the system on both an instan
taneous and long term basis.

CONVEX customers required far more
sophisticated tape-mount facilities than the
"self-mounting" normally used in so many UNIX
shops. New tpaUae and tpdeallo.c commands pro
vide mount queues, set tape drive protection,
communic~te with the operator, and log billing
information for tape accesses.

A filter between the line printer spooler
and the printer itself remembers the last few
thousand characters and will happily reprint out
put in the case of a printer jam.

A batch queue system supports multiple
variable-width queues at dynamic priorities.
Based on a new file, /etc/queuecap, the system
combines the best of the line printer spooler and
the at command to provide a facility that works
well for CONVEX's customers and internal users.

Tools & Testing

Developers of CONVEX UNIX have
several tools at their disposal which aid in imple
mentation and distribution of enhanced UNIX
systems. These include: an adb-like debugger for
UNIX as it runs on the CPU, a similar debugger
for the I/O processors, large trace buffers - acces
sible both from the CPU and I/O processors, a
module control system for releasing software, a
variety of test suites, a system exerciser, a
memory thrashing exerciser, regression test for
system timing, and a hardware performance mon
itor.

The new debuggers greatly ease isolation
of system problems. The 0-1 architecture has a
Service Processor Unit (SPU) which can stop and

restart the central processor (known as the' Job
Processor or JP). The SPU supports a debugger
(known as jpd, the job processor debugger) which
can not only examine memory in a running ker
nel but can also insert and service breakpoints
and single step execution. Similarly, the I/O pro
cessors (68000 based) have a debugger known as
adb68 which performs' the 'same functions for
lOPs in a running system. This one-two punch
dramatically reduces bug isolation time.

Trace buffers (just like those of
Berkeley's 4.2) are bigger in CONVEX UNIX (as
much as 8 MB when debugging) and are accessi
ble from both the JP and the lOPs. This feature
allows very fine grained performance monitoring
for such execution paths as system calls or I/O
processing.

The Module Control System (MCS) is a
front end for the Revision Control System (RCS)
which understands the concepts of "release trees"
and "releases". Files define releases in a tree
structured fashion. Powerful MCS commands
combined with tree-structured makefiJes can
release any version of an operating system; com
pile it, and release the object files. This
automated front-end reduces errors in distribu
tion tapes in addition to logging all changes to
the system under module control.

Test suites and regression tests emerge as
very important tools' when supporting a large
number of machines in the field. We have pur
chased suites such as those distributed by· AIM:
and Perennial. Each new release goes through
extensive regression testing to make sure no new
bugs were introduced. The "system exerciser" is
the ultimate acceptance test for each CONVEX
customer. It contains copies of almost every pro
gram which has ever broken the system in addi
tion to diagnostics specifically designed to expose
hidden problems. Load averages over 100 are
common when running the system exerciser.
Similarly, the thrash program attempts to thwart
the memory system's good intentions by writing
pages - and later verifying their contents - in
devious patterns. Similar nasty programs exist
for each of the language translators (see below).

Finally, a hardware performance analyzer
can count and record all kinds of system data,
notably the program counter, cache hits, and
functional unit status during execution. It sam
ples every clock tick (10 f\.1Hz) and summarizes
its data when an experiment concludes. A small
hook in the kernel allows the performance
analyzer to observe a single user processor during

normal timesharing (with the obvious caveats of
virtual memory performance).

Language Processors

Language processors are the star of
CONVEX's current software family. The optim
izing, vectorizing FORTRAN compiler takes
loops such as

do I • 1. 188

aU) • b(l) + cU)

enddo

and transforms them into a simple series of vec
tor instructions (e.g., vector load b, vector load c,
vector add, vector store a). External evaluators
say that CONVEX's FORTRAN is unsurpassed
in its ability to detect and implement vectoriza
tion.

A new compiler exploits the same back
end technology used in the FORTRAN compiler
to implement what is believed ·.to be the world's
first vectorizing C compiler. Similarly, CONVEX
recently commenced development on vectorized
ADA using the VERDIX company's ADA front
end.

Development Tools

An enhanced debugger (c8d - the CON
VEX symbolic debugger) and a host of profilers
complement the language processors. These tools
reduce the amount of programmer time required
to optimize applications under CONVEX UNIX.

The c8d debugger is a slightly enhanced
version of the old dbz debugger - but without all
the old bugs! It has all the standard source
program level data display and debugging state
ments in addition to new data display statements
for 64-bit integers.

The profilers include the standard prof
and gprof programs in addition to a new block
profiler 6prof. The bprof program uses the hooks
required by c8d to count entries and exits to all
the "basic blocks" of source programs. This
allows implementors to observe which parts of
their programs are actually executed. This data
aids in debugging and testing (coverage analysis
is now trivial) in addition to optimization (since
the profiles exposes which statements are really
executed).

Some CONVEX customers have nonstan
dard or exotic peripherals. The V4.0 release of
CONVEX UNIX allows them to write their own
device drivers (both the stub in the kernel and
the code in the I/O Processors). The customer
can use debugging tools to load the lOP from
user space during normal timesharing, communi
cate with the new I/O driver from user space,
and even do I/O testing without rebooting the
operating system. Once the new driver is tested,
the programmer integrates it with the kernel and
performs a sysgen. Future kernels may allow
tuning of system parameters for greater perfor
mance.

Conclusion

The CONVEX UNIX system contains a
number of performance and functionality
enhancements. Minimal changes to the kernel
and utilities maintain a high degree of compati
bility with other UNIX systems.

CONVEX's customers are pleased -with
the functionality of their UNIX systems and per
ceive them to be growing into mature, commer
cial operating systems.

..
.-

	Galadriel: A Display List-Based Window Manager
	Next-Generation Hardware for Windowed Displays
	Real-Time Resource Sharing for Graphics Workstations
	GLO - A Tool for Developing Window-Based Programs
	A Workstation-Based Inpatient Clinical System in the Johns Hopkins Hospital
	The Feel of Pi
	Flamingo: Object-Oriented Abstractions for User Interface Management
	A Proposal for Interwindow Communication and Translation Facilities
	Problems Implementing Window Systems in UNIX
	SUNDEW: A Distributed and Extensible Window System
	User Requitements for UNIX on "Big Iron"
	Experience with Large Applications on Unix
	Unix Scheduling for Large Systems
	A Straightforward Implementation of a 4.2BSD on a High Performance Multiprocessor
	Porting UNIX to the System/370 Extended Architecture
	Full Duplex Support for Mainframes
	Multi-Processor Managemetn in the Concentrix Operating System
	A User-Tunable Multiprocessor Scheduler
	High Performance Enhancements of C-1 Unix
	Considerations for Massively Parallel Unix Systems on the NYU Ultracomputer and the IBM RP3
	A UNIX(™) Subsystem on the Cray Time Sharing System (CTSS)
	A Unix-based Operating System for the Cray 2
	Ada, "C", and UNIX
	Revision Control Tools and the Ada Program Library
	Managing Separate Compilation in AT&T's UNIX Ada System
	Targeting Ada to 68000/Unix
	A Comparison of UNIX and CAIS System Facilities
	SVID as a Basis for CAIS Implementation
	An Overview of the Ada Shell
	Implementing Curses in Ada
	Big Paper on UNIX
	CONVEX Enhancements to 4.2 BSD UNIX

