
On Entity Associations In A Cloud Network
January 18, 2010

In this note I am attempting to set down some ideas I have about persistent network relationships
between entities that exist with a cloud-net.

Before launching into the main body of this note I thought I'd give conclusions first:

1. That cloud computing entities need names that can fit into an unobjectionable domain name
“label” that is limited to the normal “hostname” constraints (i.e. alphanumeric plus hypen, 1-63
octets, no leading hyphen, etc)

2. That cloud computing entity names should be a textual representation of a 128 bit globally
unique identifier, i.e. a GUID.

3. That cloud computing entity names need a sub-structure or two-part form so that the name of
the entity in its entirety can be expressed as can the name of a particular localized point of
contact of that entity.

4. That we need a layer above TCP that creates persistent associations between users of cloud
entities and those entities. These associations ought to be able to endure changes of underlying
IP addresses (and thus failure and re-establishment of TCP connections).

5. The association layer needs some sort of handshake so that the peers using the association can
establish simple names that the peers can use as checkpoints to resynchronize themselves as the
association reforms after the failure and re-establishment of underlying TCP connectivity.

Cloud Entities

When I say “entities” I mean something analogous to an application, without necessarily limiting that
notion to something that exists purely in a client or server role. When I say entity I mean something
that is above the TCP and UDP layers and more mobile and expansive than a traditional internet
application.

Some of today's internet applications are striving towards what I mean as a cloud-net entity. They are
doing so using an ad hoc collection of mechanisms ranging from stateful DNS servers, anycast routing,
load-balancers. And in most instances these approaching-cloud-net applications use URIs as persistent
or transient names.

Here are some of the characteristics that I think might adhere to a cloud-net entity:

1. The entity may have existence that spans several providers of lower level abstractions. By this I
mean that there may be parts of the entity running in several data centers operated by different
vendors. This suggests that the entity uses, at least internally, more than a single IP address and
that those addresses are not necessarily confined to any one subnet or address block.

2. The entity may grow, shrink, or move so that it changes its use of lower level abstractions such
as data centers or IP addresses.

3. Entities may suffer from partitioning of the lower layer network. (A side effect of this is that
there may be times when two or more things on the net each legitimately claim to be “the”
entity; this may complicate the issue of identification and authentication of entities.)

4. An entity may take time to achieve wide-scale consistency. This may make it necessary for a

user of the entity to be able to maintain connectivity to a the same part of an entity so that that
user can obtain the benefits of local consistency within the entity.

Names and Addresses

I personally find attribute-based lookup systems, such as IF-Map to be intriguing as a tool for solving
many of the issues that will arise in cloud based networking. However, it seems to me that at the end of
the lookup process, whether it be IF-Map or some other system, we need to find a name or an address
of some kind.

The domain name system has served us well. It seems to me that whatever kinds of names we might
invent for cloud entities we ought to take care that the names can be used as labels in domain names.

Please do not take my hope that a cloud entity name can be a domain name label to mean that we
should use DNS names as cloud entity names. I am merely suggesting that DNS is a well deployed and
reliable tool that people will want to use in unforeseeable ways; it seems that cloud entity names that
can be DNS labels will eliminate a possible obstacle to innovation.

In my mind I imagine DNS names that lead to a new kind of Resource Record that contains a cloud
entity name.

That name could be used much as we use the contents of NAPTR resource records in ENUM, i.e. as
data that is used to generate further query names that eventually lead to address (IPv4 or IPv6).

Given the trademark wars and language script issues that have battered DNS for the last decade, I
would further suggest that cloud names be free of human-semantics. If someone wishes to create
semantically meaningful names then I would urge that those semantically meaningful names be pushed
into other systems outside the scope of our endeavors and that those systems should result in the kinds
of semantically meaningless names described here.

I would suggest the “globally unique identifier” or GUID as the basis for cloud names. (See
http://en.wikipedia.org/wiki/Globally_Unique_Identifier)

GUIDs are well documented, there are broadly accepted interchange formats, and they are easily
handled in software. Textual representations can easily fit into the 63 octet limit on domain name
labels and can abide by the “hostname” format limitations.

Two Tier Names

As I mentioned previously, cloud entities may temporarily be split into multiple disconnected parts as
the result of partitioning of the underlying net services.

And either as the result of such a partitioning, as a side effect of normal network delays, or simply as a
result of design, a cloud entity may not always be fully internally consistent.

A user who is performing data updates with the cloud entity may find the experience more satisfying if
the results of those updates can be perceived by that user.

This suggests that users may not be happy if related connections to a cloud entity are scattered hither
and yon across the various contact points that might be available.

Rather, a user might want to maintain a kind of locale relationship with the cloud entity. In other
words, a user who is carrying on a dialog with a cloud entity might need to interact with the cloud
entity through contact points that that are by some metric “close” to one another.

These issues suggest to me that the names (or addresses) of cloud entities need to be formed in a way

http://en.wikipedia.org/wiki/Globally_Unique_Identifier

so that peers that care have the ability to express the name (or address) in a way that will assure (not
guarantee) that they will obtain an connection association that closely resembles some prior (and
similarly named or addressed) prior connection association.

Of course, if the peer does not care about preserving some prior association then the name (or address)
ought to have a form that elides the proximity part or wildcards it.

Thus a name (or address) of a cloud entity might be considered a tuple formed by a base name and a
name that represents a sub-realm of the cloud entity in which a user can operate and perceive consistent
results.

I would suggest that this sub-realm name be formed in the same way as the base name: a GUID that is
textually represented in a way that can form a domain name label

Thus, if one wants to think of terms of domain names, a user might express a locality sensitive name of
a cloud entity peer as <sub-realm-GUID>.<cloud-entity-GUID>.example.tld

Persistent Relationships

It seems that in the world of clouds that network relationships last longer than at lower layer
abstractions. For example, many of my own machines ,even some of my laptop machines, maintain
persistent JungleDisk relationships, even through through reboots, with Amazon's S3 cloud storage
product.

It seems rather clear to me that in the world of clouds that we need something that lasts longer than
TCP connections and is more flexible than HTTP “cookies”.

Which brings me to what I call an “association” protocol.

An Association Protocol

At its most basic an association protocol is something that allows two network entities to maintain an
ongoing communication despite lapses in underlying connectivity or changes in addresses (or even
Ipv4/IPv6 use) due to location changes.

For this there seem to be at least two architectural options:

One could build a convergence layer that sits between the IP and TCP/UDP protocols layers. Such a
protocol is in fact been defined and implemented. One advantage of this approach is that applications
that don't exchange IP addresses can often remain unchanged.

Or one could create a protocol layer that sits above TCP. (An association layer would not be needed
above UDP.) This approach has a disadvantage in that it almost certainly would affect any application
that expected TCP services. However, I believe that there is a particular advantage that make this the
superior architectural approach.

The advantage is this: The kind of long-term persistence that we can expect in cloud computing will
tend to be structured on the basis of transnational exchanges rather than unbounded data streaming.
This suggests that applications would find it useful to have a protocol service that bounds transactions
in a way that both ends to the connection would be able to know that a transaction has not completed,
has completed, or is uncertain. This need dovetails very nicely an association layer protocol that exists
above TCP and that has to accommodate the effects of failures of TCP connections and their
replacement with new TCP connections.

Much as we like to denigrate the old ISO/OSI protocol architecture as excessively heavy and fussy, it

did contain some good ideas. And one of those ideas was buried in layer 5 of their protocol stack, the
Session Layer, X.225 (which apparently is still not freely available.) Of course, as in all things
ISO/OSI that good idea was hidden under a mountain of excessive, and to my mind, unnecessary,
complexity.

The good idea is this: A simple protocol that does only two primary jobs beyond the transmission and
reception of user data (which is framed into messages.)

First, it manages the underlying TCP transport, building and rebuilding TCP transport connections as
those connections fail or go idle.

Second, it allows the two endpoints to create named checkpoints in the sequence of messages to that
the two endpoints can know that the data flow has proceeded at least to a certain named point (the data
flow may have proceeded further.)

The two endpoints can use this second, named checkpoint, mechanism to know how far they need to
back up to re-synchronize themselves.

There is a widely held view that this requires the association protocol to snapshot application data.
That is not a correct view – the association protocol merely allows the endpoints to established named
markers that indicate the progress of both entities. Any data holding and rollback is the responsibility
of the endpoints.

(All of the other stuff in the OSI Session protocol – dialogs , flow control, etc seem to be unrelated to
cloud computing issues, so I'm more than willing to ignore them.)

There is an ancillary benefit to an association protocol – it would provide an alternate to the three-point
routing used in mobile IP.

	On Entity Associations In A Cloud Network
	Cloud Entities
	Names and Addresses
	Two Tier Names
	Persistent Relationships
	An Association Protocol

